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Abstract: In remote sensing images, the presence of thick cloud accompanying shadow can affect the
quality of subsequent processing and limit the scenarios of application. Hence, to make good use of
such images, it is indispensable to remove the thick cloud and cloud shadow as well as recover the
cloud-contaminated pixels. Generally, the thick cloud and cloud shadow element are not only sparse
but also smooth along the spatial horizontal and vertical direction, while the clean element is smooth
along the temporal direction. Guided by the above insight, a novel thick cloud removal method for
remote sensing images based on temporal smoothness and sparsity regularized tensor optimization
(TSSTO) is proposed in this paper. Firstly, the sparsity norm is utilized to boost the sparsity of the
cloud and cloud shadow element, and unidirectional total variation (UTV) regularizers are applied to
ensure the smoothness in different directions. Then, through thresholding, the cloud mask and the
cloud shadow mask can be acquired and used to guide the substitution. Finally, the reference image
is selected to reconstruct details of the repairing area. A series of experiments are conducted both on
simulated and real cloud-contaminated images from different sensors and with different resolutions,
and the results demonstrate the potential of the proposed TSSTO method for removing cloud and
cloud shadow from both qualitative and quantitative viewpoints.

Keywords: cloud removal; group sparsity; unidirectional total variation (UTV); tensor optimization

1. Introduction

Remote sensing images have been widely used in many research and application fields, such as
classification [1,2], object detection [3], and urban geographical mapping [4]. However, remote sensing
images are often affected by cloud cover. According to the report from the International Satellite Cloud
Climatology Project (ISCCP) [5], the annual global average cloud cover is up to 66%. Thick clouds
usually cover up the earth’s surface information, so the information on cloud-contaminated pixels
are always inaccurate or missing, which notably affects usability and limits further analysis of remote
sensing images. Since thick cloud cover is inevitable for optical remote sensing images and influences
the subsequent processing, using appropriate methods to remove the cloud and cloud shadow
is imperative.

Thick cloud leads to loss of land cover information, so the main task of removing thick
cloud is to recover the cloud-contaminated pixels using available information. To this end,
many methods for thick cloud removal have been proposed in the last few decades. According to
the source of information exploited to reconstruct the cloud-cover area, the existing methods can be
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classified into spatial information-based methods, spectral information-based methods, and temporal
information-based methods.

� Spatial information-based methods

The spatial information-based methods are dedicated to recovering the cloud-contaminated pixels
by making full use of the information from the cloud-free area in the image to be repaired. Missing pixel
interpolation is the elementary method of these methods [6,7], which is only suitable for recovering tiny
missing areas but cannot deal with the large area absence. To remedy this limitation, many techniques
have been introduced [8–10]. Criminisi inpainting [8] fulfilled the missing area within the target image
and reconstructed pixels in an appropriate order patch by patch. Bandelet-based inpainting exploited
the spectro-geometrical information in the cloud-free parts of the cloud-contaminated image [9].
Maximum a posteriori (MAP)-based method got the cloud-free image using apriori knowledge and
gradient descent optimization [10]. Recently, Cheng et al. [11] and Zeng et al. [12] proposed methods
using similar pixel locations and global optimization to get a seamless repaired image. Additionally,
tensor completion-based methods [13] such as FaLRTC and HaLRTC also can be generalized to cloud
removal in remotely sensed images. However, spatial information-based methods can only get a
visually plausible cloud-free image when the cloud-contaminated area is small. Once the missing area
becomes large, these methods’ results are not practicable for subsequent quantitative analysis and
applications [14].

� Spectral information-based methods

For many multispectral and hyperspectral images, some areas can be contaminated in certain
bands, while other bands’ information can be intact. The main idea of the spectral information-based
methods is to use information from unaffected and unspotted bands to reconstruct the missing bands.
For instance, many algorithms modelled the relationship between the Moderate Resolution Imaging
Spectrora-diometer (MODIS) band 7 and MODIS band 6 to remove the periodic strips in MODIS
band 6 [15–17]. These methods can be applied to cloud removal, as the main task of cloud removal is to
reconstruct the missing data. Compared to the visible wavelengths, short-wavelength infrared (SWIR)
wavelengths can penetrate through cloud, which allows detection of ground surface information
under cloud cover. On this premise, Li et al. [18] exploited shortwave infrared information to obtain
haze-free imagery. For Landsat images, Zhang et al. [19] represented a haze optimized transformation
(HOT) method that corrected the visible bands radiometrically and removed the cloud in images.
In recent years, Malek et al. [20] harnessed autoencoder networks to reconstruct the cloud area of the
multispectral image. Although spectral information-based methods can make better use of auxiliary
information than spatial information-based methods, they are invalid when thick clouds contaminate
all the bands.

� Temporal information-based methods

In temporal information-based methods, there has to be at least one reference image which covers
the cloud area in the target image (the image to be repaired). As the auxiliary information contained in
the reference image can be utilized to reconstruct the cloud area in the target image, the effectiveness
of these methods is ensured. The primary method is managing to build a linear relationship between
cloud-contaminated pixels in the target image and corresponding pixels in the reference image [21–23].
However, the linear regression model has a finite ability to obtain the seamless reconstructed image.
To tackle this issue, many tactics have been figured out to lower the radiometric differences between
the original cloud-free area and the area recovered by regression. For example, Zeng et al. [24] and
Li et al. [5] proposed different residual correction methods to guarantee seamless reconstruction results.
As the land cover change increases the difficulty of cloud removal, Markov random field global
function [14] and patch-based information reconstruction [25,26] were proposed to minimize the effect
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of the land cover changes. Meanwhile, the sparse representation techniques have also been applied to
cloud removal. Sparsity assumes that a signal has only few non-zero points, and all other sampling
points are zero (or around zero). Regarding when the cloud is sparse and the cloud-free element
possesses the characteristic of low-rank, Wen et al. [27] and Zhang et al. [28] introduced the robust
principal component analysis (RPCA) into the cloud removal task. By applying discrepant RPCA, they
presented two-pass RPCA (TRPCA) and group-sparsity constrained RPCA (GRPCA) to detect and
remove the cloud. As a frequently used sparse representation method, dictionary learning was also
employed to remove the cloud in remote sensing images [29–32]. Similar to sparse representation,
Li et al. [33] proposed a nonnegative matrix factorization-based method but the coefficients of which
were not always sparse. Furthermore, many researchers expanded this series of methods from a
two-dimensional matrix to high-dimensional tensor and combined them with total variation (TV).
Ng et al. [34] and Cheng et al. [35] designed adaptive weighted tensor completion methods to recover
the cloud-contaminated pixels. Ji et al. [36] suggested a nonlocal tensor completion method to restore
the missing area. Chen et al. [37] proposed a low-rank sparsity decomposition method regularized by
total variation, called TVLRSDC, which could remove the cloud and cloud shadow simultaneously.
As deep learning has shown its tremendous potential in image processing, Zhang et al. [38] made use of
a deep convolutional neural network to extract multiscale features and recover the absent information.
Generally, the temporal information-based methods can obtain satisfactory results, as long as the
spectral difference and the land cover change are not too discrepant between the target image and
reference image.

Different from the methods as mentioned above, this paper proposes a novel tensor optimization
model based on temporal smoothness and sparse representation (TSSTO) for thick cloud and cloud
shadow removal in remote sensing images. For the sake of clear illustration, the rest of this paper
use shorthand “horizontal” and” vertical” to represent “spatial horizontal” and “spatial vertical”,
respectively. Meanwhile, “shadow” signifies “cloud shadow”, and “cloud/shadow” represents the
cloud and shadow in images. The proposed TSSTO method is mainly on the basis of the discriminatively
intrinsic features that the cloud/shadow is often sparse and smooth along the horizontal and vertical
direction in images, while the clean images are smooth along the temporal direction between images.

The main contributions of this paper could be listed as follows:

• This paper ensures temporal smoothness by unidirectional total variation regularizer. Considering
the gradient along the temporal direction between images in the clean element is smaller than that
in the cloud/shadow element, unidirectional total variation (UTV) regularizer along the temporal
direction is exploited to constrain the temporal smoothness of the clean element.

• Group sparsity is used to enhance the sparsity of the cloud/shadow, and two unidirectional total
variation regularizers along the horizontal and vertical direction are designed to deal with the
large cloud/shadow area. This scheme enables TSSTO better to remove both the large and small
cloud-contaminated area.

The rest of this paper is organized as follows. In Section 2, the proposed TSSTO method and
implementation details are introduced. In Section 3, a series of experiments are conducted and analyzed.
The conclusions of this paper and the direction of future work are reported in Section 4.

2. Methodology

Usually, the cloud/shadow element would be sparse and smooth along the horizontal and vertical
direction, while the clean images would be smooth along the temporal direction, except when the
majority of images are covered by cloud, or there are sudden significant surface changes between images.
Based on this prior knowledge, the cloud/shadow element and the clean element can be obtained by
the proposed temporal smoothness and sparsity regularized model. Concretely, the cloud/shadow
element is constrained by the group sparsity and two UTV regularizers, and the UTV regularizer
guarantees the temporal smoothness of the clean element along the temporal direction. As shown in
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Figure 1, the proposed TSSTO method contains three steps: firstly, the images are arranged to a tensor
according to the acquisition time. By executing the proposed model that is introduced in Section 2.1.1,
the cloud/shadow element and the clean element can be acquired, and the clean element can be seen as
the preliminary recovery results. Secondly, thresholds are applied to the cloud/shadow element to get
the cloud mask and shadow mask. Then, according to the cloud/shadow mask, the clean area in the
original images is substituted for the corresponding area in the preliminary recovery result. This step
together with the tensor optimization step is called TOS. Thirdly, to recover subtle texture information,
the details of the cloud/shadow area are recovered by information cloning. It is worth noting that the
cloud/shadow will be removed only when the clean complementary information is available in the
multitemporal images. The input of the proposed TSSTO method is a sequence of images that cover
the same area, and the cloud/shadow masks could be provided or not.

1 
 

 
 
 
 

Figure 1. Flowchart of the proposed Temporal Smoothness and Sparsity-regularized Tensor
Optimization (TSSTO) method.

2.1. Tensor Optimization Based on Temporal Smoothness and Sparsity

Generally, the cloud/shadow element is supposed to be sparser than the clean element in the
cloud-contaminated images, unless the cloud cover obscures the most parts of images. Therefore,
group sparsity is used to promote the sparsity of the cloud/shadow element. To better explain the
UTV regularizers, Figure 2 shows the original cloud-contaminated images, clean element, and the
cloud/shadow element. Figures 3–5 show the histogram of the absolute values of the gradients in
different directions.
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Figure 5. The histogram of the absolute values of the temporal gradient of (a) cloud/shadow element
and (b) clean element.

As shown in Figures 3b and 4b, the derivatives of the clean element are not sparse along the
horizontal and vertical directions. Conversely, the derivatives of the cloud/shadow element are
sparse along the horizontal and vertical direction, which can be seen from Figures 3a and 4a. Hence,
we constrain the horizontal and vertical gradient of the cloud/shadow element to be small in horizontal
and vertical directions, thereby extracting the cloud/shadow element. In the temporal direction,
as shown in Figure 5, the gradient of the clean images is usually small, while the temporal gradient of
the cloud/shadow element tends to be extraordinarily finite or extremely large. This graph indicates
essential information of the cloud/shadow is in the part of the large gradient. By constraining the
temporal gradient of the clean element to be small, the cloud/shadow element can be obtained, and the
general spectrum of the cloud/shadow area can be recovered in the clean element.

2.1.1. Temporal Smoothness and Sparsity Regularized Model

Mathematically, a single remote sensing image can be represented as I ∈ Rm×n×b where m and n
denote the numbers of rows and columns, and b denotes the number of spectral bands, respectively.
Given a series of remote sensing images, according to the acquisition time, they can be arranged into a
tensor ∈Rm×n×t, where t denotes the numbers of images, thereby processing images band by band.

Supposing thatD,C, and B ∈ Rm×n×t, respectively, represent the original cloud-contaminated
images, the cloud/shadow element, and the clean element, the proposed cloud removal model can be
formulated as

arg min
B,C

λ1 ‖ ∇xC ‖1 + λ2 ‖ ∇yC ‖1 + λ3 ‖ ∇zB ‖1+λ4 ‖ C ‖2,1

s.t.D = B+ C, B ≥ 0.
(1)

where ∇x, ∇y, and ∇z denote the derivative operators of horizontal dimension, vertical dimension,
and temporal dimension, respectively. λ1, λ2, λ3, and λ4 are the parameters that adjust the weights of
different information sources.

As the derivatives of the cloud/shadow element along the horizontal and vertical direction are
sparser than clean element, which can be seen in Figures 3 and 4, the unidirectional total variation (UTV)
regularizers ‖ ∇xC ‖1 and ‖ ∇yC ‖1 are utilized to enhance the smoothness of the cloud/shadow element.

Generally, the cloud/shadow elements usually have large gradients in the temporal domain
between images as a result of the randomness of the thick cloud. Conversely, the clean element
owns small temporal gradients because the features of land cover just change slightly according to
a particular trend over time. Therefore, the term ‖ ∇zB ‖1 to constrain the temporal smoothness is
applied in Equation (1).
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The term ‖ C ‖2,1 represents the group sparsity of the cloud/shadow. When the cloud is not
massive, the cloud/shadow can be seen as a sparse term approximately. Commonly, the cloud/shadow
element is sparser than the clean element for a useful image. Hence, ‖ C ‖2,1, a `2,1 norm, is used to
promote the group sparsity of the cloud/shadow element. Concretely, for a matrix X, X2,1 is defined as

‖ X ‖2,1 =
s∑

i=1

‖ xgi ‖2 (2)

where gi denotes the ith group of the variable X and s is the number of groups. For a tensor C, ‖ C ‖2,1
is defined as

‖ C ‖2,1 =‖ unfold1(C) ‖2,1 (3)

2.1.2. Optimization of the Proposed Model

The proposed model formulated by Equation (1) is a convex optimization problem. This paper
utilizes the alternating direction method of multipliers (ADMM) framework [39] to solve the proposed
model. ADMM framework can convert the complex multivariable optimization task to a few simple
subtasks. In the ADMM framework, the variables are updated iteratively, and the optimization
problem is solved by alternately optimizing one variable with other variables fixed. To fit the ADMM
framework, the auxiliary variables, A, H , V, and T are introduced and the constrained Equation (1)
is rewritten to

arg min
A,C,H ,V,T

λ1 ‖ H ‖1 + λ2 ‖ V ‖1 + λ3 ‖ T ‖1+λ4 ‖ A ‖2,1

s.t.A = C

H = ∇xC

V = ∇yC

T = ∇z (D−C)

D ≥ C ,

(4)

Then the Augmented Lagrange Multipliers (ALM) method [40] is employed to optimize the
Equation (4). ALM replaces constrained optimization problem by an unconstrained problem using
Lagrange multiplier and adds a penalty term to the objective. LetY = [Y1,Y2,Y3,Y4] be the Lagrange
multiplier and µ be the positive penalty scalar, thereby defining the augmented Lagrangian function
as follows

fµ(A,C, H ,V,T ,Y) = λ1 ‖ H ‖1 + λ2 ‖ V ‖1 + λ3 ‖ T ‖1+λ4 ‖ A ‖2,1
+ Y1,A−C+ µ

2 ‖ A−C ‖
2
F

+ Y2, H −∇xC+
µ
2 ‖ H −∇xC ‖

2
F

+ Y3,V−∇yC+
µ
2 ‖ V −∇yC ‖

2
F

+ Y4,T −∇z (D−C) +
µ
2 ‖ T −∇z (D−C) ‖

2
F

(5)

and minimizing the Equation (5) is equivalent to

arg min
A,C, H ,V,T

fµ(A,C, H ,V,T ,Y) = λ1 ‖ H ‖1 + λ2 ‖ V ‖1 + λ3 ‖ T ‖1+λ4 ‖ A ‖2,1

+
µ
2 ‖ A−C+

Y1
µ ‖

2

F

+
µ
2 ‖ H −∇xC+

Y2
µ ‖

2

F

+
µ
2 ‖ V −∇yC+

Y3
µ ‖

2

F

+
µ
2 ‖ T −∇z (D−C) +

Y4
µ ‖

2

F

(6)
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Separating the variables [A,C, H ,V,T ] into two groups which are [A, H ,V,T ] and [C], the
optimization problem of Equation (6) can be solved by alternately updating the variables of two groups.
The multivariable optimization task can be figured out by optimizing the following five sub-problems.

A
k+1 = arg min

A

fµ
(
A,Ck,Hk,Vk,T k,Yk

)
C

k+1 = arg min
C

fµ
(
A

k,C,Hk,Vk,T k,Yk
)

H
k+1 = arg min

H

fµ
(
A

k,Ck, H ,Vk,T k,Yk
)

V
k+1 = arg min

V

fµ
(
A

k,Ck,Hk,V,T k,Yk
)

T
k+1 = arg min

T

fµ
(
A

k,Ck,Hk,Vk
T ,Yk

)
(7)

and as in [40], the Lagrange multiplierY can be updated as

Y1
k+1 = Y1

k + µ
(
A

k
−C

k
)

Y2
k+1 = Y2

k+1 + µ
(
H

k
−∇xC

k
)

Y3
k+1 = Y3

k+1 + µ
(
V

k
−∇yC

k
)

Y4
k+1 = Y4

k+1 + µ
(
T

k
−∇z

(
D−C

k
)) (8)

Following, the approaches of updating variables in these five sub-problems are illustrated.
updateA:

A
k+1 = arg min

A

λ4 ‖ A ‖2,1 +
µ

2
‖ A−C

k +
Y1

µ
‖

2

F
(9)

As demonstrated in [41], the above problem is equivalent to

A
k+1
gi = arg min

A

∑
gi

(
min
A

λ4 ‖ Agi ‖2,1 +
µ
2 ‖ Agi −R

k
gi ‖

2
F

)
Rgi := C−

(Y1)gi
µ

(10)

which can be solved by the soft thresholding formula:

A
k+1
gi = max

(
‖ R

k
gi ‖2 −

λ4

µ
, 0

)
R

k
gi

‖ Rk
gi ‖2

(11)

whereAk+1
gi denotes the ith group of the variableAk+1.

update C:

C
k+1 = arg min

C

µ
2 ‖ A

k+1
−C+ Y1

µ ‖
2

F
+

µ
2 ‖ H

k
−∇xC+

Y2
2 ‖

2

F

+
µ
2 ‖ V

k
−∇yC+

Y3
µ ‖

2

F
+

µ
2 ‖ T

k
−∇z (D−C) +

Y4
µ ‖

2

F

(12)

is a least square problem, and the normal equation can be written as(
µI + µ∇T

x∇x + µ∇T
y∇y + µ∇T

z∇z
)
C

k+1

= µAk+1 +Y1 +∇
T
x

(
µHk +Y2

)
+∇T

y

(
µVk +Y3

)
+∇T

z

(
µ∇zD− µT k

−Y4
) (13)

which can be calculated by a closed-form solution as follows

C
k+1 = F −1

(
L1

L2

)
(14)
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where L1 = µAk+1 +Y1 +∇
T
x

(
µHk +Y2

)
+∇T

y

(
µVk +Y3

)
+∇T

z

(
µ∇zD− µT k

−Y4
)

L2 = µI + µ∇T
x∇x + µ∇T

y∇y + µ∇T
z∇z

updateH ,V,T :

H
k+1 = arg min

H

λ1 ‖ H ‖1 +
µ

2
‖ H −∇xC

k+1 +
Y1

µ
‖

2

F
(15)

V
k+1 = arg min

V

λ2 ‖ V ‖1 +
µ

2
‖ V −∇yC

k+1 +
Y2

µ
‖

2

F
(16)

T
k+1 = arg min

T

λ3 ‖ T ‖1 +
µ

2
‖ T −∇z

(
D−C

k+1
)
+
Y3

µ
‖

2

F
(17)

As in [40], component-wise soft thresholding is an exact updating solution for the above
three problems

H
k+1 = S λ1

µ

(
∇xC

k+1
−
Y1

µ

)
(18)

V
k+1 = S λ2

µ

(
∇yC

k+1
−
Y2

µ

)
(19)

T
k+1 = S λ3

µ

(
∇z

(
D−C

k+1
)
−
Y3

µ

)
(20)

where S denotes the soft-thresholding operator

Sω(x) = sign(x)max(|x| −ω, 0) (21)

The above optimization process can be concluded in Algorithm 1. As the proposed model is
convex as well as the variables can be separated into two groups, the convergence of the proposed
algorithm is ensured by the ADMM framework in theory.

Algorithm 1 Optimization of the Proposed Model

Input: MatrixD ∈ Rm×n×t, scalar µ, λ1, λ2, λ3, λ4
1: Initialization: B(0) = D, C(0) = D−B(0);
2: while not converged do
3: UpdateA via Equation (10);
4: Update C via Equation (14);
5: UpdateH ,V and T via Equations (18)–(20);
6: UpdateY via Equation (8);
7: end while
Output: B,C

2.2. Substitution of Clean Area

After executing the model mentioned above, the cloud/shadow element and the clean element are
acquired. The proposed model obtains the general spectral information of the images as clean element
B, while the differences between images are regarded as the cloud/shadow element C. Since the clean
element is obtained from the original cloud-contaminated image and the cloud/shadow has been
removed, the clean element can be seen as the preliminary recovery results. Generally, the larger
difference appears in the cloud/shadow area rather than the clean area, which means the cloud/shadow
area can be obtained through thresholding. To be specific, a pixel in the cloud/shadow element will be
considered as a cloud pixel if its value is greater than the cloud threshold. Similarly, a pixel will be
considered as a shadow pixel if its value is smaller than the shadow threshold. The cloud threshold
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and shadow threshold are given empirically. By doing this, the specific cloud/shadow area Ω and the
clean area Ω− can be acquired.

As the sparse representation-based methods process the whole image at the same time, the pixel
in the original clear area can be changed, which affects the subsequent processes and application.
To address this problem, the clean area in the original cloud-contaminated images is used to fill the
corresponding area of the preliminary results. As shown in Figure 6, to facilitate understanding,
Ioi is used to denote the original cloud-contaminated image in ith time node, and IBi denotes the
corresponding image derived from tensor B. The pixels in IΩ−

Bi are replaced by IΩ−
oi . The substitution

can be represented as
IΩ−
Bi = IΩ−

oi (22)
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For convenience, the procedure of tensor optimization followed by substitution is called TOS.

2.3. Details Reconstruction

After restoring the cloud/shadow area preliminarily and replacing the original cloud-free area,
the detailed information of the cloud/shadow area is reconstructed by information cloning. The image
that is closest in the time dimension and that is clean in the corresponding area is taken as the reference
image. Inspired by the conception of Poisson editing [42], the problem is modelled as a Poisson
equation. To make it easier to explain, M′ is used to denote the reference image, and M indicates
the result of TOS. Let Ω represent the recovery area in M, and the boundary of Ω is denoted as ∂Ω.
The intensity function f to be calculated is defined over the recovery region Ω, and f ′ denotes the
intensity function defined over M minus Ω. The guidance vector field defined over Ω is denoted as
W. W is defined as the mixing gradients of recovery area in preliminary result and reference image.
The problem of reconstructing the optimized result can be formulated as an optimization problem
with the boundary condition f

∣∣∣ ∂Ω = f ′
∣∣∣ ∂Ω :

min
f

x

Ω

∣∣∣∇ f −W
∣∣∣2 , with f

∣∣∣ ∂Ω = f ′
∣∣∣ ∂Ω (23)

where ∇ represents the gradient operator, which can be calculated as follows.

∂ f (x,y)
∂x = f (x + 1, y) − f (x, y)

∂ f (x,y)
∂y = f (x, y + 1) − f (x, y)
∇ = ((∂/∂x), (∂/∂y))

(24)
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Equation (23) devotes to deriving the f with a gradient which is approach W as much as possible,
which can be solved as a Poisson equation with Dirichlet boundary condition,

∆ f = div W over Ω , with f
∣∣∣ ∂Ω = f ′

∣∣∣ ∂Ω (25)

where div W represents the divergence of the vector field W, ∆ represents the Laplacian operator,

which is defined as ∆=
(
∂2

∂x2

)
+

(
∂2

∂y2

)
∂2 f (x,y)
∂x2 = f (x + 1, y) + f (x− 1, y) − 2 f (x, y)

∂2 f (x,y)
∂y2 = f (x, y + 1) + f (x, y− 1) − 2 f (x, y)

(26)

where (x, y) represents the position of the pixel in the image.
The essential formulary of information cloning is shown in Equations (23) and (25), which is an

optimization problem constrained by the boundary condition. The boundary condition enforces the
consistency of the boundary by constraint formulation f

∣∣∣ ∂Ω = f ′
∣∣∣ ∂Ω . Minimization of the `2 norm

represents that the target gradient should be as close as the guidance gradient field. By solving this
problem, a seamless cloud/shadow-free image can be obtained.

Equations (23) and (25) can be discretized using the pixel grid. The 4-neighborhood of the pixel p
in M is represented as Np, and one of the pixels in 4-neighborhood is represented as q. f (p) denotes
the intensity function value at pixel p. The aim is to calculate the pixel intensities in Ω. Equation (23)
can be rewritten as the following discrete form:

min
f

∑
〈p,q〉∩Ω,0

(
f (p) − f (q) −wpq

)2
, with f (p) = f ′(p) for all p ∈ ∂Ω (27)

where wpq = M′(p) −M′(q) denotes the directional gradient of M at pixel p.
According to (27), the following equation can be obtained:∣∣∣Np

∣∣∣ f (p) − ∑
q∈Np∩Ω

f (q) =
∑

q∈Np∩∂Ω

f ′(q) +
∑
q∈Np

wpq for all p ∈ Ω (28)

where
∣∣∣Np

∣∣∣ is the number of neighbors in Np. The above equation can be solved iteratively until
f is converged.

When pixels p is in Ω and Np ∈ Ω, there are no boundary terms in the right side of Equation (28)∣∣∣Np
∣∣∣ f (p) − ∑

q∈Np

f (q) =
∑
q∈Np

wpq (29)

As the general spectral information of the image is recovered in M, it is required to combine the
properties of f ′ and the reference image. Therefore, the guidance field should be as follows

w(s) =
{
∇ f ′(s) i f

∣∣∣∇ f ′(s)
∣∣∣ > ∣∣∣∇r(s)

∣∣∣,
∇r(s) otherwise

for all s ∈ Ω (30)

where r denotes the reference image, and s indicates a pixel in Ω.
As information cloning uses pixel gradient instead of pixel intensity to process the image,

the recovery area looks more realistic.

3. Experimental Results and Analyses

In this part, five groups of experiments that include three simulated experiments and two real-data
experiments are conducted on different satellite images with different resolutions and different land
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features. To verify the performance of the proposed TSSTO method from various aspects, the results of
TSSTO are compared with those of the common tensor completion method, FaLRTC and HaLRTC [13],
the RPCA-based method TRPCA [27], and the state-of-the-art TVLRSDC [37].

For simulated experiments, the cloud area is simulated on the original clean images. The results
of the methods are compared with the original clear images from both visual effect and quantitative
assessment. To evaluate the performance of TSSTO for cloud removal in simulated experiments, peak
signal-to-noise ratio (PSNR), structural similarity (SSIM) index [43], multiscale structural similarity
(MS-SSIM) [44], information content weighted structural similarity (IW-SSIM) [45], figure definition
(FD), cross-entropy (CE), and correlation coefficient (CC) index are employed. The simulated
experiments and quantitative metrics are introduced in Section 3.1.

For real-data experiments, two datasets covered with real cloud/shadow from different sensors are
used to test the performance of TSSTO on real cloud-contaminated images. Since there is no original
cloud-free image in the real-data experiments, only no-reference image quality assessments can be used
for analysis. Figure definition (FD), standard deviation (SD), information entropy (IE), blind image
quality measure of enhanced images (BIQME) [46], and From Patches to Pictures (PaQ-2-PiQ) model [47]
are exploited to evaluate the proposed TSSTO method quantitatively. Finally, cloud/shadow detection
results are presented and compared to analyze TSSTO further.

3.1. Simulated Experiments

In this part, the cloud areas in different shapes and sizes are simulated on the original clean
images that are from different sensors and with different resolutions. Experiments on three groups
of simulated cloud-contaminated images are designed to evaluate the effectiveness of the proposed
TSSTO method and its sensitivity to cloud size. PSNR, SSIM, MS-SSIM, IW-SSIM, FD, and CE are
calculated in the whole image within all bands used in the experiment. Unlike these indexes, CC index
is computed between the constructed area and the corresponding area in the original clear image.
Following, the quantitative metrics used in simulated experiments are illustrated briefly.

PSNR indicates the ratio of the maximum pixel intensity to the power of the distortion. FD refers
to the definition of the images, which is represented by the average gradient of the image. The average
gradient reflects the rate of the intensity change in the image of small details. Let O(i, j) and R(i, j)
denote the (i, j)th pixel in the original clean image and the cloud removal result, respectively. m and n
are the numbers of rows and columns in image. PSNR and FD can be defined as Equations (31) and (32),
where MAX represents the possible maximum value of all the pixels in image R.

The SSIM metric is a rich synthesis score of luminance, local image structure, and contrast. In SSIM,
structures are modes of pixel intensities, peculiarly among neighboring pixels, after normalizing for
luminance and contrast. As the human eyes are skilled at perceiving structure, the SSIM quality metric
agrees more closely with the subjective quality score than PSNR. The MS-SSIM metric expands on
the SSIM index by compounding luminance information at the highest resolution level with structure
and contrast information at several downsampled resolutions, or scales. IW-SSIM is an extension of
the SSIM by incorporating the idea of information content weighted pooling. The more similar two
images are, the larger SSIM, MS-SSIM, and IW-SSIM will achieve.

CE is a popular measure to evaluate the degree of difference between the two images, and
lower CE means the result is closer to the original clear image. Equation (33) shows the computation
of CE, in which the g is the pixel value, R(g) and O(g) are the probability of g in image R and O.
CC indicates the consistency between the groups of data. Let C denote the total number of the
cloud-contaminated pixels. Rc

k and Oc
k are the kth reconstructed pixel value and kth original pixel value

of contaminated cloud pixels. MEANRC and MEANOC are the mean values. Specifically, CC can be
defined as Equation (34).
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The quantitative metrics used in simulated experiments are summarized in Table 1.

PSNR = 10× log10
(

MAX
MSE

)
= 20× log10

(
MAX
√

MSE

)
MSE = 1

mn

m∑
i=1

n∑
j=1

[R(i, j) −O(i, j)]2
(31)

FD =
1

mn

m∑
i=1

n∑
j=1

√{
[R(i, j) −R(i, j + 1)]2 + [R(i, j) −R(i + 1, j)]2

}
/2 (32)

CE =
MAX−1∑

g=0

R(g)
log2 R(g)

O(g)
(33)

CC =

∑C
k=1

(
Rc

k −MEANRC
)(

Oc
k −MEANOC

)
√∑C

k=1

(
Rc

k −MEANRC
)2 ∑C

k=1

(
Oc

k −MEANOC
)2

(34)

Table 1. The induction of the quantitative metrics used in simulated experiments.

Index Full Name Formula or Reference Note

PSNR Peak signal-to-noise ratio Equation (31) The higher the better
SSIM Structural similarity index (Wang et al., 2004) [43] The higher the better

MS-SSIM Multiscale structural similarity (Wang et al., 2003) [44] The higher the better

IW-SSIM Information content weighted
structural similarity (Wang et al., 2011) [45] The higher the better

FD Figure definition Equation (32) The higher the better
CE Cross-entropy Equation (33) The lower the better
CC Correlation coefficient index Equation (34) The higher the better

3.1.1. Effectiveness of the Proposed TSSTO Method

In this section, experiments are performed on datasets from Gaofen-1 WFV images, and SPOT-5
images, respectively. The results of the proposed TSSTO method are compared with those of FaLRTC,
HaLRTC, TRPCA, and TVLRSDC in both qualitative and quantitative ways.

The first simulated experiment is conducted on six Gaofen-1 Wide Field View Multispectral (WFV)
images with a size of 512 × 512 pixels, three bands (bands 1, 2, and 3) of which are used to undertake the
test. The images mainly contain the urban area and vegetation, and the images are acquired in October
2015 and December 2015, in Hubei. The original and simulated images of true color composition
(red: band 3; green: band 2; blue: band 1) are shown in Figure 7a,b. The recovery results of FaLRTC,
HaLRTC, TRPCA, TVLRSDC, TOS, and the proposed TSSTO method are presented in Figure 7c–h.
The zoomed detailed regions of images in Figure 7 is shown in Figure 8. The quantitative metrics of
the above methods are listed in Table 2. The scatterplots with CC for different results are shown in
Figure 9.
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Table 2. The PSNR, SSIM, MS-SSIM, IW-SSIM, FD, and CE of the first simulated experimental results.
The values of the highest accuracies are in bold.

Index FaLRTC HaLRTC TRPCA TVLRSDC TOS TSSTO

PSNR 35.80 35.83 24.27 46.29 47.25 55.84
SSIM 0.9714 0.9716 0.6936 0.9982 0.9956 0.9998

MS-SSIM 0.9797 0.9797 0.8568 0.9996 0.9990 0.9998
IW-SSIM 0.9631 0.9633 0.9321 0.9996 0.9983 0.9998

FD 1204.27 1204.36 671.69 1213.5 1205.14 1220.96
CE 5.04 × 10−4 2.80 × 10−4 3.98 × 10−1 5.55 × 10−5 9.20 × 10−5 3.37 × 10−5
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(e) the TOS method; (f) the proposed TSSTO method.

It can be seen that the ground features are complex, and the details are rich in these images. There is
a huge difference between the result of TRPCA (Figure 7e) and the original image (Figure 7a), especially
the city area in the bottom left. The reason is that TRPCA changes the values of the pixels in the
cloud-free area. For the HaLRTC method, as shown in Figures 7d and 8d, it is evident that the texture
information of the result is lost, since no auxiliary information out of the image is used to reconstruct
the cloud area. For FaLRTC, some details are lost in the result which does not achieve satisfactory
performance, as FaLRTC utilizes no reference images. The result of TVLRSDC (Figure 8f) looks more
like the original image than those of the above three contrast methods (Figure 8c–e). The ground
features are recovered generally, and the spectral consistency is maintained nicely. In Figure 8,
compared to the result of TVLRSDC, the result of TSSTO not only achieves spectral consistency with
the original image but also restores more details. The texture in the yellow rectangle in Figure 8h
is more refined than the same area in Figure 8f, and the quantitative indexes (Table 2) of the result
of TSSTO achieve optimal among all the methods. In addition, the result of TOS restored spectral
characteristics generally, which shows the reliability of the proposed model that uses UTV regularizer
to constraint the temporal smoothness of the clean element. As shown in Figure 9, the CC values of the
HaLRTC and FaLRTC results are no more than 0.6, which are unsatisfactory; CC of the TRPCA and
TVLRSDC results are 0.707 and 0.793, respectively, which have a moderate increase; and the result of
the proposed TSSTO method gives the highest value of 0.990. These results suggest that the cloud
removal results from the proposed TSSTO method can deliver a high-caliber reconstruction result and
provide a better support for further applications.

In the second simulated experiment, the proposed TSSTO method is tested on eight SPOT-5
images with four bands (bands 1, 2, 3, and 4) which were acquired in 2015, in Beijing. The size of the
experimental images is 512 × 512 pixels. The original images of false-color composition (red: band 3;
green: band 2; blue: band 1) are shown in Figure 10a. The results of the different methods are shown
in Figure 10c–h. Figure 11a–h shows the zoomed regions cropped from Figure 10a–h. The quantitative
assessment indexes of the above methods were calculated within four bands and listed in Table 3.
Figure 11 lists the scatterplots with CC for different results.
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Table 3. The PSNR, SSIM, MS-SSIM, IW-SSIM, FD, and CE of the second simulated experimental
results. The values of the highest accuracies are in bold.

Index FaLRTC HaLRTC TRPCA TVLRSDC TOS TSSTO

PSNR 43.20 43.42 36.30 49.98 47.75 52.25
SSIM 0.9644 0.9634 0.9010 0.9976 0.9943 0.9989

MS-SSIM 0.9758 0.9750 0.9635 0.9866 0.9829 0.9890
IW-SSIM 0.9571 0.9583 0.9591 0.9836 0.9788 0.9871

FD 1153.77 1144.97 940.56 1159.46 1148.95 1171.05
CE 3.24 × 10−4 1.55 × 10−3 6.45 × 10−2 8.59 × 10−5 2.84 × 10−4 8.09 × 10−5

For the results of FaLRTC (Figure 11c) and HaLRTC (Figure 11d), the reason for the blurry resulting
images is that restoring a large amount of texture and structure information is hard just by using little
information from the cloud-free part of the image to be repaired. From Table 3, the result of TRPCA gets
the unsatisfactory value of metrics, due to the differences in the non-cloud area between the original
image and the resulting image (e.g., the area in the yellow rectangle in Figure 10e). In the result of
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TVLRSDC (Figure 11f), the recovery region looks darker than the rest of the image. This phenomenon
may result from that TVLRSDC reshapes the original fourth-order dataset A ∈ Rm×n×b×t into a
matrix ∈ Rmn×bt, which leads to equal treatment of information from the spectral domain and temporal
domain. Moreover, with matrix decomposition denoising image and removing cloud, images can be
smooth and vague, but there is no processing in the TVLRSDC method to recover the details. For the
result of TOS, the values of PSNR, SSIM, MS-SSIM, IW-SSIM, and FD are greater than the results of
FaLRTC, HaLRTC, and TRPCA. The reconstructed result of TSSTO is more persuasive with enough
details. As shown in Table 3, the quantitative assessments of TSSTO expound the validity of the
proposed method as well. In Figure 12, the result of TSSTO is convincing with highest CC.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 26 
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3.1.2. Sensitivity to Cloud Size

In this section, the insensitivity of the proposed method to the cloud size is proved. The experiment
was carried out on 11 well-aligned Landsat-8 OLI images with a size of 512 × 512 pixels, three bands
(bands 2, 3, and 4) of which were used to conduct the test, with different sizes of cloud area. With true
color composition (red: band 4; green: band 3; blue: band 2), the simulated images and results of
TSSTO are shown in Figure 13a,b. The proportions of cloud pixels in the simulated images are 1.34%
in Figure 13a, 3.92% in Figure 13b, 10.35% in Figure 13c, 19.74% in Figure 13d, 34.84% in Figure 13e,
respectively. The simulated images with the results of different cloud sizes are shown in Figure 13.
The zoomed details region of Figure 13 is shown in Figure 14. Figure 15 shows the PSNR values of the
results with different methods and cloud sizes.
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Figures 13–15 can be analyzed as follows. First, since HaLRTC and FaLRTC both reconstruct the
cloud-contaminated pixel using information from the cloud-free area of the target image, the curves of
PSNR values of HaLRTC and FaLRTC are similar. Second, the proposed TSSTO method can achieve
excellent results for cloud removal. As shown in Figure 14e, the proposed TSSTO method can obtain
detail-rich and seamless results of cloud removal, even the proportion of cloud in the test image
reaches about 35%. Third, although the PSNR value declines with the increasing of the cloud sizes,
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PSNR values of TSSTO are always more prominent than those of the compared methods. Fourthly,
as shown in Figure 15, it is distinct that the performance of TRPCA is barely satisfactory, which can
be explained as follows: HaLRTC, FaLRTC, TVLRSDC, and TSSTO change the pixel values in the
cloud-contaminated area only, but TRPCA manipulates the cloud-free pixels twice and introduces
errors into the cloud-free area. Through the above experiments and analyses, the insensitivity of
TSSTO to cloud size is proved. With two sparsity norms regularizers along the horizontal direction
and vertical direction applied on cloud/shadow, TSSTO can obtain satisfactory results regardless of the
size of the cloud area.

3.2. Real-Data Experiments

In this section, two groups of real-data experiments are conducted on different real
cloud-contaminated images from different sensors, and the cloud areas are in different shapes
and different sizes. To evaluate the cloud removal results quantitatively, the FD, SD, IE, BIQME,
and PaQ-2-PiQ were calculated and listed. These assessments were calculated in the whole image.
To make a comprehensive evaluation of the proposed TSSTO method, the cloud/shadow detection
results are provided and compared with those of TRPCA and TVLRSDC.

The assessments used to evaluate the results are described below. SD is the simplest way to
evaluate image quality, which represents the dispersion degree of pixel value relative to the mean
value of the image. Let R(i, j) denote the (i, j)th pixel in the result, and m and n are the numbers of
rows and columns in the resulting image. Then Equation (35) defines SD, where the mean value of
image R is represented as MEANR. Larger SD indicates a better image with a more dispersed grey
level. IE estimates the amount of information in an image from the information theory perspective.
The probability of g in image R is signified by R(g), and Equation (36) shows the computation of IE,
where MAX denotes the possible maximum value of all the pixels in image R. BIQME is proposed
in [46], which is a comprehensive evaluation index of contrast, sharpness, brightness, colorfulness,
and naturalness of images. PAQ-2-PiQ is a deep learning model trained on a sizeable subjective
picture quality dataset for blind or no-reference perceptual picture quality prediction. A higher score
generally means a higher quality of an image. More details of PAQ-2-PiQ can be seen in [47].

The quantitative metrics used in real-data experiments are summarized in Table 4.

SD =
1

mn

m∑
i=1

n∑
j=1

[R(i, j) −MEANR]
2 (35)

IE = −
MAX∑

g
R(g) log2 R(g) (36)

Table 4. The induction of the quantitative metrics used in real-data experiments.

Index Full Name Formula or Reference Note

FD Figure definition Equation (32) The higher the better
SD Standard deviation Equation (35) The higher the better
IE Information entropy Equation (36) The higher the better

BIQME Blind image quality measure of
enhanced images

(Gu et al., 2018) [46] The higher the better

PAQ-2-PiQ From Patches to Pictures model (Ying et al., 2020) [47] The higher the better

3.2.1. Real-Data Experiments Results

The first experiment was performed on five Gaofen-1 WFV images with four bands
(bands 1, 2, 3, and 4) in the size of 1000× 1000 pixels, which were acquired in October 2015 and December
2015, in Hubei. Figure 16a shows the original image (true color composition red: band 3; green: band 2;
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blue: band 1). Figure 16f shows the recovery results of the proposed TSSTO method, and the results of
FaLRTC, HaLRTC, TRPCA, TVLRSDC are listed in Figure 16b–e. Figure 17 shows the zoomed detailed
regions of images in Figure 16. Table 5 lists the values of SD, FD, IE, BIQME, and PAQ-2-PiQ of the
results generated by different methods.
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Table 5. The SD, FD, IE, BIQME, and PAQ-2-PiQ of the first real-data experimental results. The values
of the highest accuracies are in bold.

Index FaLRTC HaLRTC TRPCA TVLRSDC TSSTO

SD 89.9728 89.3110 84.8692 88.3581 88.9597
FD 2044.10 1992.41 959.80 2104.80 2087.41
IE 5.9639 5.8964 5.5484 5.7703 5.9279

BIQME 0.5431 0.5531 0.5565 0.5548 0.5691
PAQ-2-PiQ 62.35886 62.36411 64.06165 68.43037 70.99075
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As shown in Figure 16, the results of FaLRTC and HaLRTC are not adequate for the demands,
due to the difficulty to restore the missing texture only using the information in the clean area.
The cloud-free area (e.g., area in the yellow rectangle) is the result of TRPCA () and looks different
from the same area in the original image (Figure 16). For the zoomed detailed result of TVLRSDC
(Figure 17e), there is some apparent color deviation in the recovery area, as the information in the
spectral domain and the temporal domain is processed together and the details are not especially
recovered. The result of TSSTO (Figure 16f) is satisfactory visually, and the zoomed area shows that
TSSTO achieves optimal results with clear textures and enough details. In Table 5, compared with the
results of contrast methods, the majority of the quantitative metrics values of the result of TSSTO is
optimal. The experiment results testify the effectiveness of the proposed model that ensures temporal
smoothness between images by UTV regularizer along the temporal direction, and band-by-band
processing avoids large spectral differences.

In the second real-data experiment, the proposed TSSTO method was tested on 10 well-aligned
SPOT-5 images with a size of 2000× 2000 pixels. The images were acquired in 2015, in Beijing. Four bands
(bands 1, 2, 3, and 4) of the images were used to conduct the test. The original cloud-contaminated
image and results of different methods are shown in Figure 18 (red: band 3; green: band 2; blue: band 1).
Figure 18a is the original cloud-contaminated image. Figure 18b–f shows the results of FaLRTC,
HaLRTC, TRPCA, TVLRDC, and the proposed TSSTO method, respectively. The zoomed detailed
regions of images in Figure 18 are represented in Figure 19. The values of quantitative assessments of
the results obtained by different methods are listed in Table 6.

Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 26 

zoomed detailed regions of images in Figure 18 are represented in Figure 19. The values of 
quantitative assessments of the results obtained by different methods are listed in Table 6. 

As shown in Figures 18 and 19, the results of FaLRTC and HaLRTC are not acceptable, as large 
unrepaired area and complex texture information make it difficult to reconstruct the cloud-
contaminated area. For the results of TRPCA, TVLRSDC, TSSTO, which are with decent visual effects, 
it is noticed that the result of TRPCA (Figure 18d) has large spectral differences from the original 
image (Figure 18a). The transition between the original clean area and the recovery area is not smooth 
in the result of TVLRDC, as shown in Figure 19e. This deficiency can be explained as follows. There 
are large differences in the cloud area between the temporal images, while the differences in the cloud 
area between different bands within a single image are small. Hence, the strategy taken by TVLRSDC 
that processes the information from the temporal dimension and spectral dimension together can 
make the result unsatisfactory. Compared with the result of TVLRSDC, the result of TSSTO obtains 
the refined textures and rich details, as the proposed model guarantees the general spectral 
information to accord with the cloud-free area and information cloning guarantees fine-grained 
details in the cloud recovery area. 

 
Figure 18. SPOT-5 images for the third real-data experiment: (a) cloud image; (b)–(f) the results of 
FaLRTC, HaLRTC, TRPCA, TVLRSDC, and TSSTO, respectively. 

 
Figure 19. (a)–(f) Detailed regions clipped from Figure 18a–f. 

Figure 18. SPOT-5 images for the third real-data experiment: (a) cloud image; (b–f) the results of
FaLRTC, HaLRTC, TRPCA, TVLRSDC, and TSSTO, respectively.



Remote Sens. 2020, 12, 3446 22 of 26

1 
 

 

 
 

 
Figure 19. (a–f) Detailed regions clipped from Figure 18a–f.

Table 6. The SD, FD, IE, BIQME, and PAQ-2-PiQ of the second real-data experimental results. The
values of the highest accuracies are in bold.

Index FaLRTC HaLRTC TRPCA TVLRSDC TSSTO

SD 83.2207 82.8479 82.8273 82.1530 83.2207
FD 1275.14 1276.56 1333.00 1259.68 1420.49
IE 7.2976 7.2976 7.3762 7.2784 7.3312

BIQME 73.56364 73.56164 76.84676 77.22347 77.36649
PAQ-2-PiQ 0.5377 0.5265 0.5473 0.5586 0.5620

As shown in Figures 18 and 19, the results of FaLRTC and HaLRTC are not acceptable, as large
unrepaired area and complex texture information make it difficult to reconstruct the cloud-contaminated
area. For the results of TRPCA, TVLRSDC, TSSTO, which are with decent visual effects, it is noticed
that the result of TRPCA (Figure 18d) has large spectral differences from the original image (Figure 18a).
The transition between the original clean area and the recovery area is not smooth in the result of
TVLRDC, as shown in Figure 19e. This deficiency can be explained as follows. There are large
differences in the cloud area between the temporal images, while the differences in the cloud area
between different bands within a single image are small. Hence, the strategy taken by TVLRSDC that
processes the information from the temporal dimension and spectral dimension together can make
the result unsatisfactory. Compared with the result of TVLRSDC, the result of TSSTO obtains the
refined textures and rich details, as the proposed model guarantees the general spectral information to
accord with the cloud-free area and information cloning guarantees fine-grained details in the cloud
recovery area.

In this section, to testify the performance of the proposed method, a series of comprehensive
experiments were conducted on different datasets. Due to the abundant and various spatial details,
the tensor complement method, HaLRTC and FaLRTC cannot reach stable results, in which the
reconstructed area appears lack of texture, especially when the cloud area and shadow area contain
sophisticated land cover (e.g., river and artificial facilities). TRPCA changes the values of pixels in the
original clean area, which makes the result untrustworthy. TVLRSDC can process the information from
spectral and temporal domains together. However, the information from different domains is treated
equally without discrimination, which may cause abnormal spectral differences. For the proposed
TSSTO method, with the recovery of the details in place, the result is optimal in most cases. The visual
effect, as well as quantitative indexes, shows that tensor optimization can get the nearly acceptable
result and information cloning restore the details effectively.
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3.2.2. Cloud/Shadow Detection Result

To further evaluate the performance of the proposed TSSTO methods, the cloud/shadow detection
results of TRPCA, TVLRSDC, and TSSTO are presented in Figure 20c–e. As there are three categories
(cloud, shadow, and clear background) in real-data images to be detected, original images were
manually delineated as ground truth (Figure 20b), and overall accuracy (OA), average accuracy (AA),
and Kappa coefficient (K) were calculated and displayed in Table 7 to demonstrate the feasibility of
the proposed TSSTO. Concretely, OA represents the ratio of the correct classifications of total pixels.
AA means the average accuracy of all categories, and the K measures the consistency between the
ground truth and detection result. The higher these three metric values are, the better the detection
result is.Remote Sens. 2020, 12, x FOR PEER REVIEW 23 of 26 
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Figure 20. Cloud/shadow detection results for the real-data experiments. (a) Cloud image; (b) ground
truth; (c–e) the detection results of TRPCA, TVLRSDC, and TSSTO, respectively.

Table 7. The AA, OA, and Kappa in the real-data experiments. The bold values denote the highest
accuracies in each experiment.

Image Method OA AA K × 100

Gaofen-1 WFV image TRPCA 91.28 91.91 87.30
TVLRSDC 91.72 91.94 88.05

TSSTO 93.08 93.30 90.92

SPOT-5 image TRPCA 89.56 78.99 77.93
TVLRSDC 91.15 82.41 82.91

TSSTO 92.51 85.80 87.07

From Figure 20, cloud/shadow detection results of TSSTO look convincing, according to the
original cloud-contaminated images. For Gaofen-1 WFV image, it can be noticed that some cloud-free
areas are detected as the cloud by TRPCA, while some cloud-free regions are recognized as the shadow
by TVLRSDC. For SPOT-5 image, TSSTO also delivers a more accurate mask, which enables cloud
removal methods not to change the pixels in the cloud-free area as much as possible and helps to
preserve the spectral characteristics of cloud-free regions. The quantity indexes also demonstrate the
effectiveness of the proposed TSSTO, which can be seen in Table 7.

4. Conclusions

This paper proposed a novel TSSTO method for remote sensing images cloud/shadow removal
using tensor optimization based on temporal smoothness and sparsity. Specifically, the smoothness
along different directions is guaranteed by the UTV regularization terms, and the sparsity is enhanced by
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the group sparse norm. Furthermore, the convergence of the model is ensured by the ADMM framework
in theory. The flow of the proposed TSSTO method encompasses three steps: tensor optimization,
the substitution of cloud/shadow-free area, and information cloning. In the tensor optimization step,
the cloud/shadow element and the clean element is generated by executing the proposed model. In the
substitution step, the cloud/shadow area is determined by the threshold segmentation to obtain the
cloud/shadow mask, thereby replacing the original clean area in the preliminary result with the same
area of the original image guided by the generated mask. Finally, information cloning is applied to
restore more details in the recovery area. A series of experiments have been conducted on the different
datasets, which verifies that the proposed TSSTO method not only can recover the cloud area and cloud
shadow area with fine-grained details but also can keep spectral consistency and the continuity well.
What is more, the increasing size of the cloud areas shows little influence on the proposed method.

Meanwhile, TSSTO still has room for improvement. First, the result of TSSTO is related to the
result of cloud/shadow detection, which means the performance of TSSTO leverages on credible
cloud/shadow detection result. The authors will make a good effort to study and to overcome this
limitation. Second, reliance on the quality of input images reduces some application scenarios of
TSSTO. In the future, it is worth making appropriate use of the information that in the spectral domain,
spatial domain, and temporal domain jointly weaken the dependency on the quality of the input
images and better reconstruct the cloud-contaminated area.
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