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Abstract

In this paper, we design an efficient large-scale oblique image matching method.

First, to reduce the number of redundant transmissions of match data, we pro-

pose a novel three-level buffer data scheduling (TLBDS) algorithm that con-

siders the adjacency between images for match data scheduling from disk to

graphics memory. Second, we adopt the epipolar constraint to filter the initial

candidate points of cascade hashing matching, thereby significantly increasing

the robustness of matching feature points. Comprehensive experiments are con-

ducted on three oblique image datasets to test the efficiency and effectiveness of

the proposed method. The experimental results show that our method can com-

plete a match pair within 2.50∼2.64ms, which not only is much faster than two

open benchmark pipelines (i.e., OpenMVG and COLMAP) by 20.4∼97.0 times

but also have higher efficiency than two state-of-the-art commercial software

(i.e., Agisoft Metashape and Pix4Dmapper) by 10.4∼50.0 times.
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1. INTRODUCTION

With the continuous development of unmanned aerial vehicles (UAVs) and

oblique imaging technology, oblique images have been employed for surface 3D

reconstruction of large-scale scenes such as cities [1]. Precise camera poses are

mandatory to utilize oblique images in 3D reconstruction, which can be obtained

by the airborne global navigation satellite system and the inertial measurement

unit (GNSS/IMU) system. However, limited by measurement accuracy, the

image positioning and orientation system (POS) data obtained through the air-

borne GNSS/IM and installation angle cannot meet the requirement of direct

image positioning and orientation accuracy. In the computer vision commu-

nity, the structure from motion (SFM) can solve camera poses and 3D points

automatically from overlapped images with high accuracy [2] [3]. In SFM tech-

nology, a key step is image matching, which occupies approximately half of the

computational cost [4].

Image matching aims to find corresponding points automatically between

overlapping images based on a specific similarity measure, which is an impor-

tant research topic in the field of photogrammetry and computer vision [5].

According to matching primitives, image matching technologies can be divided

into three categories: point matching, line matching, and region matching [4].

Since the invention of scale-invariant feature transform (SIFT) [6], point match-

ing methods have become the mainstream for oblique image pipelines thanks

to their robustness to changes in scale, illumination and viewpoint [7]. Never-

theless, limited by the high time complexity of feature extraction and feature

point matching, the time complexity of image matching methods based on point

matching is relatively high [4]. There are two directions to increase the efficiency

of point matching, including the improvement of the algorithm and the utiliza-

tion of graphic processing unit (GPU) parallel computing. The former is related

to design lightweight algorithms such as speeded-up robust features (SURF) [8],

oriented fast and rotated brief (ORB) [9], while the latter aims to utilize the

parallel computing capability of GPUs [10] [11].
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Within the field of oblique image matching, several open-source libraries and

commercial software have been developed and released over the past decade,

such as open multiple view geometry (OpenMVG) [12], MicMac [13], Agisoft

Metashape [14], and Pix4Dmapper [15]. However, oblique images are charac-

terized by a large amount of data and a high degree of spatial overlap between

images, resulting in huge complexity in the combination of match pairs [16].

Although the utilization of GPU cards can accelerate the matching process of

oblique images, it will create a significant amount of redundant transmission of

match data between the disk and the graphics memory, leading to high time cost

and insufficient use of computational resources. In addition to data scheduling,

the feature point matching is also a bottleneck that limits the efficiency of the

oblique image matching. Although cascade hashing algorithm has the highest

efficiency for feature point matching, we find that the matching robustness of

the cascade hashing algorithm is relatively low compared with the multi-random

k-d trees algorithm [17].

When matching oblique images of large scenes, it is generally necessary to

match hundreds of thousands of images. The limited memory and graphics

memory capacity make the redundant transmissions of data unavoidable, lead-

ing to an unnecessarily high input and output (I/O) cost. After research, we

found that the efficiency of large-scene oblique image matching is mainly affected

by I/O cost and feature point matching efficiency. Xu et al. [10] proposed a

data exchange strategy to solve the problem of high I/O cost. However, their

data exchange strategy does not consider the adjacency relationship between

the images, resulting in a situation where the I/O cost is too high and com-

puting resources cannot be fully utilized when matching image sets with sparse

matching relationships. In this paper, we propose a novel efficient large-scale

oblique image matching method that can achieve a competitive accuracy com-

pared with state-of-the-art methods but with much higher efficiency. Specifi-

cally, our method involves reducing the redundant transmission of match data

and improves the robustness of cascade hashing matching to feature points. Our

major contributions can be summarized as:

3



(1) We propose a three-level buffer data scheduling (TLBDS) algorithm that

considers the adjacency between images to achieve efficient scheduling of

match data from disk to graphics memory and improve the utilization of

computing resources. The application of the TLBDS algorithm enables the

matching of large-volume oblique images to be conducted on a mid-level

computer, while the matching efficiency will not be affected by the changes

in the number of images.

(2) We introduce the epipolar constraint calculated according to the rough POS

into the cascade hashing (the cascade hashing with the epipolar constraint is

called E-CasHash), thereby improving the robustness of the cascade hashing

and reducing the cost of matching calculation.

(3) By fusing TLBDS and cascade hashing with epipolar constraint, we design

a highly efficient matching method for large-scale oblique images, whose

accuracy and efficiency are tested across different scales, platforms and en-

vironments.

The remainder of this paper is structured as follows. Section 2 reviews the

related work. The proposed oblique image matching method is described in

Section 3, and experiment results and analyses are provided in Section 4. Some

discussions about our method can be seen in Section 5, and Section 6 draws the

conclusion together with our further work.

2. RELATED WORK

Image matching is a key step in SFM 3D reconstruction. Compared with

other matching methods, the point feature-based matching technique has be-

come a golden standard for aerial images, thanks to its invariance to translation,

rotation, scale and tolerance to large deformations caused by changes in illumi-

nation and viewpoints [16]. So far, the mainstream matching methods used in

oblique image matching pipelines are based on feature points [12]. Oblique im-

age matching based on point feature involves two steps: 1) feature point extrac-

tion and 2) feature point matching. The time complexity of feature extraction
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has a linear relationship with the number of images. Feature point matching

refers to searching the corresponding feature points on two overlapping images.

Therefore, the cost of time in feature matching relates to the number of match

pairs, the number of feature points on images, and the time complexity of the

feature point search algorithm.

For feature point extraction, Wu [18] harnessed GPU-aided hardware accel-

eration to increase the efficiency of SIFT feature point extraction algorithm to

reduce the time cost of SFM. Herbert et al. [8] proposed a SURF (speeded-up

robust feature) extraction algorithm. Rublee et al. [9] changed the feature de-

scriptor to binary code and reduced the dimension of the descriptor. Li et al.

[11] employed a different optimization and parallel computing to implement a

high-performance SIFT as HartSift.

When it comes to feature point matching, the utilization of a simple ex-

haustive matching strategy will involve huge computational complexity. The

reason is that oblique images have a higher degree of overlap with a large tilted

angle and the number of oblique images collected by the drone at a test site is

significantly large compared with traditional aerial images [16]. To address this

issue, the selection of match pairs is the default strategy to accelerate image

matching [19]. For example, Barazzetti et al. [20] implemented match pair se-

lection using spatial overlap based on the intersection of footprints derived from

rough POS to remove invalid match pairs. Jiang et al. [19] used the maximum

spanning tree (MST) algorithm after selecting the matching pair to simplify the

topological connection network (TCN) graph, so as to remove the redundant

match pairs. Inspired by text retrieval, Agarwal et al. [21] proposed a vocab-

ulary tree-based image retrieval method to select match pairs from unordered

images (images without geographical labels and definite time series). In [22],

the visual similarity of the image was quantified by the number of feature points

matching. To be specific, after a small number of feature points were extracted

from the down-sampled image, match pairs were then selected according to the

matching rate of the feature points. Similarly, Wang et al. [23] quantified the

visual similarity of images based on the number of feature matches, while the
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difference was that the multi-random k-d trees algorithm was used to accelerate

the approximate nearest neighbor (ANN) search of feature points.

Apart from match pair selection, the feature point matching algorithm, as

the subsequent procedure after feature point extraction, also has received wide

attention over the past two decades. Normally, the feature point matching algo-

rithm takes the Euclidean distance or Hamming distance between the descriptor

vectors as the similarity measurement and leverages the ANN algorithm to find

the corresponding feature points. For ANN algorithms, one of the most famous

and frequently-used methods is the k-d trees [24]. For example, Silpa-Anan et al.

[17] proposed a novel multi-random k-d trees algorithm based on the traditional

k-d trees algorithm to accelerate the matching of SIFT descriptors. Muja and

Lowe [25] performed a wide range of comparisons amongst k-d trees, PCA-tree

[26], and RP-tree [27], showing that the multi-random k-d trees were one of the

most effective methods for matching high dimensional SIFT descriptors. Muja

and Lowe [28] proposed a new algorithm named the priority search k-means

tree and released it as an open-source library called fast library for approxi-

mate nearest neighbors (FLANN) [29], which has been integrated into many

open-source projects. As a well-performing nearest neighbor search on high-

dimensional data, the k-d trees algorithm has also been widely used in the field

of SFM 3D reconstruction [15]. Although being very effective in low dimen-

sionality, the k-d trees’ performance will decline rapidly for high-dimensional

space.

Apart from the k-d trees algorithm, there are also many other types of

research to speed up SIFT feature point matching. Inspired by linear discrimi-

nant analysis hash (LDAHash) [30], Cheng et al. [4] proposed a cascade hash-

ing structure. Specifically, the cascade hashing was designed as a three-layer

structure: hashing lookup, remapping, and ranking. Each layer leveraged dif-

ferent similarity measurements and filtering strategies to reduce the sensitivity

to noise. Further, Xu et al. [10] implemented the cascade hashing algorithm

on the GPU and optimized the implementation details, resulting in a 20-times

faster approach compared with the original SIFT-GPU [18]. Xu et al. [31] cal-
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culated the fundamental matrix after matching a small number of feature points

by brute force at a high scale and then introduced the epipolar constraint into

the cascade hashing to reduce the cost of matching. However, as far as we know,

in the region of repeated texture or repeated structure, the robustness of the

cascade hashing algorithm for feature point matching is lower than that of the

multi-random k-d trees algorithm as illustrated in Fig.1.

(a) Cascade hashing matching, 910 matches

(b) Multi-random k-d trees matching, 2289 matches

Figure 1: Comparison of the matching results of (a) cascade hashing and (b) multi-random

k-d trees. We can see that under the premise of extracting the same number of feature points,

the robustness of the cascade hashing for feature point matching in the repeated texture region

is lower than that of the multi-random k-d trees algorithm.

3. METHODS

A large-scale oblique image matching method is proposed by adopting effi-

cient match data scheduling and feature point matching based on cascade hash-

ing with epipolar constraint. The overall workflow of our method is illustrated

in Fig.2. Although the cascade hashing algorithm is less robust in repeated
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texture regions, it has significant efficiency advantages [4]. Inspired by Xu et

al. [31], after calculating the fundamental matrix using rough POS and cam-

era intrinsic parameters, we introduce the epipolar constraint to improve the

robustness of cascade hashing matching (this method is called E-CasHash), the

details about the original cascade hashing can be found in [4]. Subsequently, a

three-level buffer data scheduling algorithm (this method is called TLBDS) that

considers the adjacency relationship between images is proposed to reduce the

redundant match data transmission and enhance the utilization of computing

resources. By doing so, the proposed method can match oblique images of a

large scale on a medium configuration computer.

Figure 2: The overall workflow of the proposed oblique image matching method.

3.1. Feature Point Clustering and Matching

We first harness SIFT-GPU [18] to extract the feature points of the image

and calculate the 128-dimensional descriptor of each feature point [6]. There-

after, the locality-sensitive hashing (LSH) algorithm [32] is employed to perform

hashing remapping, which calculates the hashing code and bucket code of each

feature point. According to the bucket code, we can cluster all feature points of

each image into multiple hashing tables.

The specific process of feature point clustering consists of three steps. First,

we choose the 1-dimensional Gaussian distribution N(0, 1) as the hash function

to generate a set of L random matrices Matb = {M1,M2, ...,ML}. The matrix

8



Mi(i = 1, 2, . . . , L) contains m rows and 128 columns. Then, the dot product

is conducted by each row rj(j = 1, 2, ...,m) of the random matrix Mi and the

descriptor vector v according to formula (1) to obtain an m-bit bucket code (m

is set as 10 in our method). After the dot product of L random matrices and

descriptor vectors v, we obtain L m-bit bucket codes of descriptors. In order

to facilitate the subsequent processing, we convert the L m-bit bucket codes

from binary to decimal to obtain the L bucket ids of the descriptor. Finally,

according to L bucket ids, the feature points can be clustered into L hash tables.

hrj (v) =

 1, if rj · v > 0

0, if rj · v ≤ 0
(1)

Feature point matching is achieved by E-CasHash executed on the GPU

card. The E-CasHash algorithm is an improvement on the basis of the cascade

hash [4] algorithm, while the process of E-CasHash can be divided into the

following steps:

(1) Hashing lookup. After the feature point clustering, each image can establish

L hash tables, and each hash table is composed of 2m buckets [4]. Especially,

the corresponding feature point between the images has the same bucket id.

Therefore, according to the L bucket ids of the query point q in the image

Ii, L candidate buckets can be queried in the hash table of the image Ij .

There can be several points in the bucket is the candidate’s corresponding

point of q.

(2) Epipolar parameters calculation. According to the rough POS of oblique im-

ages, the relative pose parameters between images can be obtained. Besides,

the initial camera intrinsic parameters are calibrated in advance. Hence,

give the intrinsic matrics Ki, Kj , rotation matrics Ri, Rj , and translation

vectors ti, tj , the fundamental matrix Fij between stereo pair Ii and Ij can

be computed as:

Fij = Ki
−TRi[Rj

T tj −Ri
T ti]×Rj

TKj
−1 (2)

9



The epipolar parameters lq = [ aq bq cq ]T for the point q = [ uq vq 1 ]T

in the image Ii corresponding to the image Ij can be computed as:

lq = Fijq (3)

(3) Candidate feature point filter based on epipolar constraint. In E-CasHash,

the epipolar constraint is described as the candidate point p and epipolar

line lq satisfying dist(p, lq) < d. Therefore, after calculating the distance

between the candidate point to the epipolar lq according to equation (4),

the candidate points in 1) can be filtered. In this paper, the value of d is

the 95% confidence value of the 1-degree-of-freedom chi-square test where

d = 3.84. The employment of epipolar constraints can not only reduce the

matching cost but also enhance the robustness of cascade hashing matching.

dist(p, lq) =
|aqup + bqvp + cq|√

aq2 + bq
2

(4)

(4) Top k nearest neighbors selection. After the epipolar filtering, the top k

(k = 2 in our method) neighboring points can be selected by calculating

the Hamming distance between hashing code of the query point q and the

candidate point p.

(5) Euclidean distance calculation and Lowe ratio test [6]. By calculating the

Euclidean distance between the SIFT descriptors of the top k neighboring

points and query point q, the candidate point q′ that satisfies the Lowe ratio

test is the corresponding point of q. Since the Lowe ratio test is performed

only among a subset of features close to the epipolar line, the E-CasHash

algorithm can retain more correspondences on repetitive texture.

3.2. Efficient Three-level Buffer Data Scheduling: From Disk to Graphics Mem-

ory

During image matching, each image will form a match pair with one or

more other images, so the match data of each image will inevitably be trans-

ferred from disk to graphics memory multiple times. To reduce the number of
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data transmissions, we propose a three-level buffer data scheduling (TLBDS) al-

gorithm. The purpose of the data scheduling algorithm is to transfer the match

data from the disk to the graphics memory in the optimal order without missing

matches, thereby minimizing the total number of data transfers. Here, the data

scheduling is similar to the postman delivery to deliver all letters and travel the

least distance. Reducing redundant transmission can not only reduce the time

cost of image matching but also make full use of the computing resources of the

computer.

The TLBDS algorithm is composed of two parts, i.e., scheduling sequence

generation and match data scheduling from disk to graphics memory. To be

specific, the scheduling sequence generation is to generate an optimal match data

reading order Listin and match data clearing order Listout based on the match

pair information, the capacity of memory as well as graphics memory. The

match data scheduling transfers the match data from the disk to the graphics

memory based on the generated match data scheduling sequence and clears the

matched data in the graphics memory. For more details on TLBDS, a few

relevant terms are defined:

Definition 1: Supposing that the set Setall containing N images, the match

data of M images stored in the graphics memory are called the inner sets

Setinner while the match data of N −M images stored in the disk or mem-

ory are called the outer sets Setouter. Before scheduling, all match data are

stored on the disk. It should be noted that in this article each image has a

separate match data file.

Definition 2: Assuming that there are M match data in Setinner and K

match data in Setouter whose corresponding images exist matching relationships

with the image I, the total match pairs Pairall, the inner set match pairs

Pairinner, and the number of outer set match pairs Pairouter of the image I

are M + K, M , and K, respectively. In the scheduling sequence generation

procedure, the criterion for selecting the match data of the image I is Kselect =

ω ∗M −K, where ω is the weighting factor and is set as 2.3 in this paper.

Definition 3: Memory indicates the random access memory (RAM) of
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the computer, while the graphics memory denotes the memory of the graphics

card. Based on the above definitions, the read-in sequence Listin represents

the sequence of match data that is waiting to be transferred from memory to

graphics memory, while the read-out sequence Listout signifies the sequence of

matched data that is waiting to be cleared in graphics memory.

Three situations exist during the scheduling sequence generation: no match

data in the graphics memory, part of the match data in the graphics memory

but the available graphics memory has not been used up, and available graphics

memory is empty. For the first case, the id of the image with the largest Pairsall

in Setouter will be pushed into the read-in sequence Listin. For the second case,

the id of the image with the largest Kselect in Setouter will be pushed into the

read-in sequence Listin. For the third case, the id of the image with the smallest

Pairsouter in the graphics memory will be pushed to the read-out sequence

Listout. Repeating the above process, the optimal data scheduling sequence

Listin and Listout can be gradually obtained. The details of the scheduling

sequence generated by the TLBDS algorithm are summarized in Algorithm 1.

Figure 3: Match data scheduling schematic diagram. Note that the read-in sequence de-

termines the transferred order of match data both from disk to memory in batch and from

memory to graphics memory one by one. The read-out sequence determines the cleared order

of matched data in graphics memory.

After acquiring the scheduling sequence Listin and Listout, the match data

of each oblique image need to be loaded into the graphics memory according to

the read-in sequence Listin and matched data need be removed according to the

read-out sequence Listout (Fig.3 ), thereby reducing the redundant match data

12



Algorithm 1 Scheduling Sequence Generation

Input: an image id list Listimg, a match pair list Listpairs, maximum number

of files loaded in graphics memory NgraMax

Output: a read-in list Listin, a read-out list Listout

1: Setinner ← {}, Setouter ← {Listimg}

2: calculate Pairsinner and Pairsouter of each image

3: while Setouter is not empty do

4: idx← 0

5: if Setinner.size() ≥ NgraMax then

6: search an image idx with the minimum Pairsouter in Setinner

7: Listout.add(idx)

8: Setinner.remove(idx)

9: else if Setinner is empty then

10: search an image idx with the largest Pairsall in Setouter

11: Listin.add(idx)

12: Setinner.add(idx)

13: Setouter.remove(idx)

14: else

15: search an image idx with the largest Kselect in Setouter

16: Listin.add(idx)

17: Setinner.add(idx)

18: Setouter.remove(idx)

19: end if

20: update Pairsinner and Pairsouter of images related to the image idx

according to Listpairs

21: end while

22: return Listin, Listout
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transmission and enhancing the utilization of computing resources. When there

exists free space in the graphics memory, the corresponding match data of the

first id in Listin will be transmitted from the memory to the graphics memory.

When the available graphics memory is insufficient, the storage space occupied

by the match data will be reclaimed according to Listout, in order to store new

data in the vacated storage space. In the process of the TLBDS algorithm to

perform match data scheduling, the E-CasHash algorithm is executed on the

GPU card for feature point matching between oblique images. The details of

oblique image matching based on TLBDS and the E-CasHash algorithm are

summarized in Algorithm 2.

To avoid memory fragmentation and extra time consumption caused by

memory application-release, we stipulate that the match data file of each im-

age has the same size. Therefore, the storage space is allocated in memory

and graphics memory all at once in the initialization phase. Meanwhile, in

the process of match data scheduling, the new match data fed into the graph-

ics memory directly cover the storage space occupied by cleared data. Hence,

the accelerated computing power of the GPU card can be fully exploited to

perform oblique image matching. To be specific, the multi-thread and the com-

puter unified device architecture (CUDA) stream [33] technology are adopted

to concurrent execution of match data transmission and feature point matching,

improving the efficiency of oblique image matching significantly.

4. EXPERIMENT AND RESULTS

The extensive experiments are conducted on three datasets captured in dif-

ferent sites and scales to evaluate the performance of the proposed method.

First, the adjacency matrix is obtained from the match pair information to fur-

ther validate the correctness of the scheduling sequence generated by our TLBDS

algorithm. Then, we test the effectiveness of the proposed TLBDS algorithm by

conducting match data scheduling experiments. Finally, we compare the perfor-

mance of our method with four frequently-used pipelines, including OpenMVG-
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Algorithm 2 Oblique Image Matching Based on TLBDS and E-CasHash

Input: match data set Setdata, read-in list Listin, read-out list Listout, max-

imum number of files loaded in memory and graphics memory NmemMax,

NgraMax

Output: match result set Setresult

1: posin ← 0, posouter ← 0, Nin ← 0, Nmem ← 0

2: import NmemMax match data files into memory according to Listin

3: while true do

4: if posin is Listin.size()− 1 then

5: break

6: end if

// read-out process

7: if Nin ≥ NgraMax then

8: id← Listout[posout]

9: free Setdata[id]

10: Nin ← Nin − 1

11: posout ← posouter + 1

12: else

13: if Nmem ≥ NmemMax then

14: import NmemMax match data files into memory, according to Listin

15: Nmem ← 0

16: end if

// read-in process

17: id← Listin[posin]

18: load Setdata[id] into graphics memory

19: performing feature point matching on GPU according to E-CasHash,

and get match result rid

20: Setresult.add(rid)

21: Nin ← Nin + 1

22: posin ← posin + 1

23: Nmem ← Nmem + 1

24: end if

25: end while

26: return Setresult
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ANNL2 [12], OpenMVG-CasHash [12], COLMAP [34], Agisoft Metashape [14],

and Pix4Dmapper [15]. We evaluate the merits of each method from three as-

pects including efficiency, accuracy and completeness. The proposed method

is implemented using the C++ programming language and all experiments are

executed on the Windows 10 platform with an Intel Core i7-7820X CPU (3.60

GHz) and a TITAN Xp graphics card (12GB), while the memory capacity is

48GB.

4.1. Test Sites and Datasets

Dataset-1: The ground covers of the first test site are presented in Fig.4(a).

Dataset-1 is obtained in the first test site by the oblique photography system

with five SONY ILCE-5100 cameras. There are 1,914 oblique images in Dataset-

1 with a size of 6000 × 4000 pixels. The camera mounting angles in nadir and

oblique directions are 0 °, 45°/- 45°, respectively. The altitude of this flight is

230m, the overlap degrees of images in the forward and side directions are 85%

and 75%, and the average GSD is 2.85 cm/pixel.

Dataset-2: The ground covers of the second test site are demonstrated

in Fig.4(b). Dataset-2 is acquired in the second test site by the conventional

five-camera oblique photogrammetric system equipped with SONY ILCE-5100

cameras. The overlap degree of 3,490 oblique images in Dataset-2 in the forward

and side directions are 75% and 55%, respectively. The altitude of this flight is

140m, and the average GSD of Dataset-3 is 1.8 cm/pixel.

Dataset-3: The details of the third test site are illustrated in Fig.4(c). As

a large-volume oblique image dataset, Dataset-3 is gathered in the third test

site by a conventional five-camera oblique photogrammetric system with SONY

ILCE-7R cameras. This photogrammetric system is equipped with one nadir

camera and four oblique cameras, while the four oblique cameras rotated by 45°

with the inspection to the nadir camera. There are 14,225 oblique images in the

size of 7360 × 4921 pixels, and the altitude of UAV flight is 300m.

The detailed information for the flight configuration of the three datasets is

presented in Table 1. During the data collection process, rough POS data of
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(a) Test site1(S1) (b) Test site2(S2)

(c) Test site3(S3) (d) Geographical location of the test sites

Figure 4: The orthoimage of the three study sites to show the ground details
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three datasets are measured using the GNSS/IMU device where the nominal

accuracies in the horizontal and vertical directions are 4∼5cm.

Table 1: Detailed information for flight configuration of the three datasets

Item name Dataset-1 Dataset-2 Dataset-3

Flight height (m) 230 140 300

Forward / side overlap (%) 85 / 75 75 / 55 75 / 55

Camera mode SONY ILCE-5100 SONY ILCE-5100 SONY ILCE-7R

Number of cameras 5 5 5

Sensor size (mm) 23.4 * 15.6 23.4 * 15.6 35.9 * 23.9

Focal length (mm)
nadir: 20 nadir: 20 nadir: 35

oblique: 35 oblique: 35 oblique: 50

Camera mount angle
nadir: 0 nadir: 0 nadir: 0

oblique: 45/-45 oblique: 45/-45 oblique: 45/-45

Number of images 1,914 3,490 14,225

Image size (pixel) 6000 * 4000 6000 * 4000 7360 * 4912

GSD(cm/pixel) 2.85 1.8 3.1

4.2. Verification of Correctness and Effectiveness of TLBDS Algorithm

In this section, we investigate the correctness and effectiveness of the TLBDS

algorithm. Firstly, the proposed TLBDS algorithm is employed to generate the

data scheduling sequence, and then the match data scheduling and matching

are performed. The correctness of the TLBDS algorithm is verified by checking

whether there are missing match pairs after match data scheduling. Finally, by

comparing the number of match data transmissions before and after match data

scheduling, the effectiveness of the TLBDS algorithm is tested.

4.2.1. Correctness

To verify the correctness of the scheduling sequence generated by the TLBDS

algorithm, we perform match pair selection based on the pipeline proposed by

Barazzetti et al. [20] and generate the adjacency matrix, as shown in Fig. 5.

In the adjacency matrix graph, if the position (i, j) is blue, the image Ia with
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id i and image Ib with id j are a match pair. During the verification process,

the value of position (i, j) in the adjacency matrix will be set as white after

the match data of match pairs (i, j) are read into the graphics memory. If the

scheduling sequence is correct, all the elements in the adjacency matrix will be

white after match data scheduling according to the scheduling sequence. From

Fig.5, we can see that the adjacency matrices of the three datasets are all com-

pletely cleared after scheduling matching, which demonstrates the correctness

of the scheduling sequence generated by the TLBDS algorithm.

4.2.2. Effectiveness

In this section, we compare the matching efficiency of oblique images with

and without data schedule to verify the effectiveness of the TLBDS algorithm.

The only difference between oblique image matching with or without data

scheduling is that the matching without data scheduling transfers the match

data from the disk to the graphics memory according to the order of match

pairs, while the matching with data scheduling is based on the data scheduling

sequence generated by the TLBDS algorithm. In the above two cases, the im-

age feature point matching is achieved by the E-CasHash algorithm on the GPU

card. The details of matching the three datasets in the two cases are shown in

Table 2.

Table 2: Comparison of oblique image matching efficiency with or without data scheduling

Dataset Match pairs

No scheduling Scheduling

Speedup
Time(s) Speed

(pairs/s)

Time(s) Speed

(pairs/s)

Dataset-1 95,872 1,656.40 57.88 261.6 366.5 6.33×

Dataset-2 173,552 5,267.50 32.9 433.6 400.3 12.14×

Dataset-3 709,370 48,808.60 14.5 1,786.50 397.1 27.32×

As can be seen from Table 2, for the relatively small dataset Dataset-2,

the utilization of our TLBDS algorithm can yield about tenfold accelerations,
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(a) Adjacency matrix of Dataset-1 (b) Adjacency matrix after match data

scheduling

(c) Adjacency matrix of Dataset-2 (d) Adjacency matrix after match data

scheduling

(e) Adjacency matrix of Dataset-3 (f) Adjacency matrix after match data

scheduling

Figure 5: The adjacency matrix of match pairs of three datasets.
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while the increase of efficiency for Dataset-3 is more than 27 times. Besides,

the efficiency gap notably enlarges with the increase of images. The reason for

this gap is that the reusability of the match data stored in graphics memory

is not considered by those methods without scheduling, leading to the redun-

dant transmissions of match data. Redundant match data transmission has a

high I/O cost and will affect the full utilization of computing resources. In con-

trast, the proposed TLBDS first generates an optimal data scheduling sequence

that rearranges the read-in and read-out order of match data, which reduces

the number of data transmissions and increases the efficiency of oblique image

matching.

4.3. Comparison of Efficiency, Accuracy and Completeness with State-of-the-

art Methods

We comprehensively evaluate our proposed method in efficiency, accuracy

and completeness with state-of-the-art methods. Four software packages, in-

cluding OpenMVG, COLMAP, Agisoft Metashape and Pix4Dmapper, are taken

as comparative approaches. As a library for computer vision scientists and the

multi-view geometry community, OpenMVG is designed to provide an SFM solu-

tion from feature extraction to sparse reconstruction. In the image feature point

extraction stage, OpenMVG integrates two algorithms: SIFT and AKAZE. Be-

sides, OpenMVG provides seven feature point matching methods, including the

most commonly used multi-random k-d trees and cascade hashing algorithm.

COLMAP is a general-purpose SFM and multi-view stereo (MVS) pipeline with

a graphical and command-line interface. In the feature point matching stage,

COLMAP uses the algorithm in the open source library FLANN to perform

the nearest neighbor search of feature points, that is, COLMAP also uses the

multi-random k-d trees algorithm to search for corresponding feature points in

candidate images. The Agisoft Metashape combines the most advanced image

feature point matching algorithm and employs multi-core processing and GPU

card parallel computing technology, providing a robust and efficient oblique

image matching function. As the world’s leading professional photogrammet-
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ric data processing software, Pix4Dmapper delivers a complete solution from

image matching to orthoimage generation. Similarly, Pix4Dmapper also uses

multi-core processing and GPU acceleration technology to improve the effi-

ciency of digital image matching. In the pipelines of Agisoft Metashape and

Pix4Dmapper, brute force pair-wise matching is replaced by rough POS data

for match pair selection to reduce the time consumption. The detailed informa-

tion of the five pipelines for oblique image matching is shown in Table 3.

Table 3: The configure information of five oblique image matching pipelines

Pipeline
Match pairs Feature points Match data

scheduling

GPU card

selection method matching algorithm acceleration

OpenMVG-ANNL2 External input Multi-random k-d trees no no

OpenMVG-CasHash External input Cascade hashing no no

COLMAP Internal generate Multi-random k-d trees no no

Agisoft Metashape Rough POS calculate / yes yes

Pix4Dmapper Rough POS calculate / yes yes

Ours Rough POS calculate E-CasHash yes yes

Note: due to the confidentiality of commercial software, unknown information in the table

is indicated by ‘/’.

4.3.1. Efficiency

We compare the number of match pairs matched per second to evaluate

the matching efficiency. To achieve the impartial comparison tests, we set all

pipelines in Table 3 to utilize the SIFT algorithm with default parameters for

extracting feature points, and we adopt the identical match pair selection results

based on the method proposed by Barazzetti et al [20] as the input of the

pipelines of OpenMVG-ANNL2, OpenMVG-CasHash and Ours. When testing

COLMAP, we count the number of generated match pairs and the corresponding

time consumption to match. Besides, as the mature professional software does

not provide the application programming interface of intermediate processes,

we feed the same rough POS data into Agisoft Metashape and Pix4Dmapper

for match pair selection.
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Figure 6: Comparison of matching efficiency between different pipelines.

The matching efficiency of each pipeline is reported in three datasets in

Fig.6. The efficiency of the OpenMVG-ANNL2 pipeline, OpenMVG-CasHash

pipeline and COLMAP is relatively low as they only utilize the multi-core CPU

for matching. Specifically, the matching efficiency of OpenMVG-ANNL2 is 9.5

pairs/s for Dataset-1 and is 4.2 pairs/s for Dataset-2, while the figures for

OpenMVG-CasHash are 20 pairs/s and 13.8 pairs/s, respectively. Besides, with-

out match data scheduling, the efficiency (3.9 pairs/s for OpenMVG-ANNL2

and 7.9 pairs/s for OpenMVG-CasHash) becomes lower for the larger Dataset-

3. Please note that the only difference is that the OpenMVG-ANNL2 pipeline

uses the multiple-random k-d trees algorithm to matching feature points, while

the OpenMVG-CasHash pipeline uses a cascade hashing algorithm. Through

the above comparison, we can find that the efficiency of the cascade hashing

algorithm is about 2∼3 times faster than the multiple-random k-d trees al-

gorithm. Although OpenMVG-ANNL2 and COLMAP pipeline uses the same

match algorithm, the engineering optimization of COLMAP is more efficient.

We further compare the efficiency of the most advanced commercial soft-

ware Agisoft Metashape and Pix4Dmapper. The matching efficiency of Agisoft

Metashape for the three datasets is 37.69 pairs/s, 37.5 pairs/s, and 9.8 pairs/s,
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while the figures for the Pix4Dmapper pipeline are 35.5 pairs/s, 39.1 pairs/s,

and 7.7 pairs/s, respectively. As the Agisoft Metashape and Pix4Dmapper

pipelines generate fewer redundant match pairs, the match data of the left im-

age (reference image) corresponding to each query image requires less memory

and graphics memory. When matching smaller datasets, considering the size

of memory and graphics memory, the match data can be transmitted into the

memory and graphics memory within finite times, leading to a relatively stable

matching efficiency. However, the number of redundant data transmissions will

increase with the growth of the match data volume, resulting in the underuti-

lization of computing resources and the reduction of matching efficiency. It can

be found that when matching Dataset-3, although accelerated by the GPU card,

the efficiency of the Agisoft Metashape pipeline and Pix4Dmapper pipeline is

only equivalent to the cascade hashing performing on a multi-core CPU.

By contrast, the efficiency of our pipeline is independent on the match data

volume since the optimal match data scheduling sequence with minimum redun-

dant data transmission is obtained by the proposed TLBDS algorithm. Specif-

ically, the efficiency of our pipeline on three datasets is 366.5 pairs/s, 400.3

pairs/s, and 397.1 pairs/s, respectively. In other words, it only takes approxi-

mately 2.5∼2.64ms for our pipeline to matching a match pair. Compared with

the state-of-the-art Agisoft Metashape and Pix4Dmapper pipelines, our pipeline

can increase the matching efficiency of oblique images by 10 to 50 times. Gener-

ally, the I/O cost will be high when the matching relationship between images is

relatively sparse. But, from the adjacency matrix in Fig.5, the proposed oblique

image matching method still has the highest efficiency for three datasets with

sparse relationships.

4.3.2. Accuracy

For accuracy analysis, we adopt inliers proportion as the assessment criteria.

By the positively correlated relationship, the inliers proportion can directly mea-

sure the matching accuracy of the feature points in the oblique image. It should

be pointed out that COLMAP and OpenMVG-ANNL2 use the same matching
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algorithm. So, the accuracy of OpenMVG-ANNL2, OpenMVG-CasHash and

Ours are compared. Specially, we use the random sample consensus (RANSAC)

[35] algorithm to estimate the fundamental matrix, then conduct geometric ver-

ification to remove the outliers. In each dataset, we count the inliers proportions

of 1000 match pairs. As shown in Fig.7, we can see: (1) the inliers proportion of

the OpenMVG-ANNL2 pipeline is higher than that of the OpenMVG-CasHash

pipeline, demonstrating the multiple-random k-d trees algorithm has higher

matching accuracy than the cascade hashing; (2) the inliers proportion of our

pipeline is significantly higher than that of the OpenMVG-CasHash pipeline

but is similar to the OpenMVG-ANNL2 pipeline, illustrating that the accu-

racy of proposed E-CasHash can obtain a competitive performance with the

multiple-random k-d trees.

From comprehensive analysis of efficiency and accuracy, we can find that the

proposed oblique image matching method not only robustly delivers reliable ac-

curacy but also significantly improves the efficiency of large-scale oblique image

matching.

4.3.3. Completeness

For the completeness comparison, the BA (Bundle Adjustment) experiment

is employed to perform SFM reconstruction. Specifically, the incremental SFM

strategy is adopted in the Agisoft Metashape, Pix4Dmapper and our pipelines.

In the BA stage, two images with a large enough intersection angle and a suffi-

cient number of well-distributed features are chosen as the seed to operate the

scene recovery. Thereafter, camera poses and 3D points are obtained by con-

tinuously adding a well-conditioned image to the reconstructed scene. In the

process of image registration and triangulation, local BA is executed to reduce

accumulated errors along newly added images. Thereafter, global BA is used to

accurately calculate all camera poses and 3D points. The SFM reconstruction

of our pipeline is executed on the G3D software developed by us, which adopts

the method proposed in this paper for oblique image matching.

To evaluate the completeness, reprojection error and the number of con-
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(a) Dataset-1 inliers proportion. The average inliers pro-

portion of OpenMVG-ANNL2, OpenMVG-CasHash, and

E-CasHash was 0.76, 0.73, and 0.75

(b) Dataset-2 inliers proportion. The average inliers pro-

portion of OpenMVG-ANNL2, OpenMVG-CasHash, and

E-CasHash was 0.78, 0.68, and 0.74

(c) Dataset-3 inliers proportion. The average inliers pro-

portion of OpenMVG-ANNL2, OpenMVG-CasHash, and

E-CasHash was 0.79, 0.69, and 0.76

Figure 7: Comparison of the inliers proportion of the three pipelines matching. It can be

seen that the matching accuracy of the proposed E-CasHash is better than that of cascade

hashing and close to that of the multiple-random k-d trees algorithm.
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Figure 8: Average reprojection error comparison. The reprojection error can indirectly prove

the accuracy of oblique image matching, we can find that the accuracy of our method is the

highest on Dataset-2 and Dataset-3.

nected images and 3D tie points are counted. Fig.8 shows the reprojection error

of the three pipelines after SFM reconstruction on the three data sets. Table

4 shows the information of the connected images and the generated 3D points,

while the 3D point cloud generated by our pipeline and corresponding enlarged

details are shown in Fig.9. We can see that: (1) from the analysis of reprojec-

tion error, our pipeline achieves a competitive accuracy; (2) the performance of

our pipeline is similar to the Agisoft Metashape and Pix4Dmapper pipelines in

terms of the number of connected images; (3) our reconstruction pipeline can

obtain 3D point clouds with sufficient completeness and detailed information.

Table 4: The numbers of connected images and 3D points for completeness comparison

Dataset

Agisoft Metashape Pix4Dmapper Ours

Images Points Images Points Images Points

1 1,914/1,914 293,490 1,914/1,914 102,310 1,914/1,914 259,614

2 3,489/3,490 473,759 3,490/3,490 423,158 3,490/3,490 693,083

3 14,212/14,225 4,631,650 14,214/14,225 1,904,063 14,216/14,225 3,073,284
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(a) Dataset-1

(b) Dataset-2

(c) Dataset-3

Figure 9: SFM reconstruction result by our pipeline. The right image is the detail of the red

rectangle in the left image.
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5. DISCUSSION

In this paper, we propose an efficient large-scale oblique image matching

method with two major contributions. First, to increase the robustness of the

cascade hashing algorithm, the rough POS of the oblique image is leveraged to

calculate the epipolar between the corresponding points. The epipolar is applied

to the filter of the candidate points of the cascade hashing matching (as shown

in Section 3.1). Second, an algorithm called TLBDS is designed and employed

for the scheduling of match data from disk to graphics memory (as shown in

Section 3.2), thereby reducing the I/O cost. Combining the E-CasHash and the

TLBDS algorithm, we design an efficient method for oblique image matching,

and the efficiency of our method is 10∼50 times fast than the state-of-the-art.

In terms of the efficiency of oblique image matching, there are two reasons

for our method’s remarkable efficiency. First, our method uses epipolar con-

straint to reduce cascade hashing matching cost. From Section 4.3.1, it can

be found that the time complexity of this algorithm is lower than that of the

multiple-random k-d trees algorithm. Second, and most importantly, we design

an efficient TLBDS algorithm, which can significantly reduce the redundant

transmission of match data and make full use of the computing resources of the

GPU card. Specifically, redundant match data transmission has a high I/O cost

and will cause insufficient data supply, making computing resources in a state

of waiting for match data.

From the analysis of the inliers proportion (as shown in Section 4.3.2), the

accuracy of our method is higher than the cascade hashing but slightly lower

than the multiple-random k-d trees algorithm. Compared with cascade hash-

ing, the reason why our method has higher accuracy is that we use epipolar

constraints to filter the initial candidate points, thereby reducing the impact

of noise. By contrast, the hash remapping error will cause more noise in the

candidate points obtained by using the Hamming distance as the similarity mea-

sure. Meanwhile, the descriptor similarity of the feature points in the repeat

texture region is relatively high. Taking Euclidean distance between descriptors

29



as the similarity measure will cause false matches during fine matching. Besides,

compared with the most correct corresponding points, the influence of a small

number of wrong points on the relative orientation results can be eliminated in

the subsequent BA optimization. Therefore, the difference in accuracy between

our method and the multiple-random k-d trees algorithm is negligible to the

oblique image matching employed in SFM. This is also confirmed in Fig.8.

6. CONCLUSION

In this paper, we proposed an efficient large-scale oblique image matching

method. Our contributions were two-fold: the fast feature points matching

based on cascade hashing with epipolar constraint and the efficient three-level

buffer match data scheduling that considers the adjacency relationship between

images. Extensive comparisons with state-of-the-art pipelines on oblique image

matching on three datasets shown the efficiency as well as the accuracy of our

pipeline for large-scale oblique image matching. Importantly, the application of

the TLBDS algorithm allowed the matching of large-volume oblique images on

a mid-level computer, and the matching efficiency of our method would not be

affected by changes in the number of images. However, the accuracy of rough

POS data will affect the matching accuracy of our method. Therefore, reducing

the dependence of our method on external conditions is the direction that needs

to be explored in our further research.
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