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Abstract

The modeling of wake effects plays an essential role in wind farm optimal design and operation. In this study, a novel deep learning
method, called Super-Fidelity Network (SFNet), is proposed for wind farm wake modeling, which would be the first attempt to
combine the advantages of both analytical models and numerical models through deep learning methods. Specifically, the low-
fidelity flow fields generated by the analytical models serve as the prior information for predicting high-fidelity flow fields. Then
the SFNet learns the mapping relationships between low-fidelity data and high-fidelity data, thereby predicting high-fidelity flow
fields without resorting to huge computational resources. Numerical experiments demonstrate that the mean absolute error of the
developed model is just 1.9% with respect to the freestream wind speed when compared with high-fidelity data, after trained on
only 45 samples. In addition, the generalizability of the proposed SFNet in yaw angles, wind speeds and array column extensions
is verified by a series of numerical experiments. Furthermore, the experimental results demonstrate that the trained model is able
to predict the flow field of a wind farm consisting of 100 turbines within several seconds based on a standard desktop. The demo of
our SFNet is available at https://github.com/warwick-icse/SFNet
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1. Introduction

As an important and promising low-carbon alternative to fos-
sil fuels, wind energy has been experiencing rapid and contin-
uous growth in recent years [1]. Generally, wind turbines are
installed in large-scale arrays to form wind farms, thereby re-
ducing the overall cost. However, the lower wind speed and
higher turbulence intensity caused by upstream turbines, i.e.
the wake effects, have a huge impact on the downstream tur-
bines, e.g. considerably reducing their power generations and
increasing their structural loads [2]. The incorrect estimation of
the wake effects will greatly undermine the prediction accuracy
of the wind farm energy yield. Therefore, massive efforts have
been poured into wind farm wake modeling, from low-fidelity
analytical wake models to high-fidelity numerical wake models.

The analytical models [3, 4, 5] are formulated analytically
which can generate the flow field in real-time even for large-
scale wind farms. Starting from the development of the one-
dimensional models [3, 4, 6], the analytical models have been
extended to two-dimensional [7, 8, 9] and three-dimensional [2,
10, 11] models. Meanwhile, more contributing factors are in-
cluded in subsequent studies, including yaw effects [12, 13, 14],
background flow fields [15] and terrain conditions [16]. Be-
sides, the Supervisory Control and Data Acquisition (SCADA)
data are also incorporated into the analytical models [17]. How-
ever, limited by model inadequacy and parameter uncertainty,
the modeling errors of analytical models are still significant.
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For example, many improved analytical models are still derived
based on the Gaussian wake model. Even though the velocity in
far-wake areas can be approximated quite well, the near-wake
features are usually not accurately captured. By contrast, based
on the Computational Fluid Dynamics (CFD), the numerical
models solve the Navier-Stokes (NS) equations using numer-
ical approaches. Reynolds-averaged Navier-Stokes (RANS)
and Large Eddy Simulation (LES) have been carried out with
the turbine rotors modeled by the actuator line method (ALM)
[5, 18, 19] or the actuator disk method (ADM) [20, 21, 22].
Even though both far-wake and near-wake areas of the flows
can be comprehensively simulated, a CFD simulation for a
wind farm with tens of turbines requires tremendous compu-
tational resources due to the refined mesh needed to resolve the
flow dynamics. For example, on a desktop workstation with an
Intel Xeon CPU @3.60 GHz, it requires more than 100 hours
on 12 processors to simulate a single NREL Phase VI wind
turbine [23]. And the required computational resources will
rapidly explode with the increase of the scale of the wind farm
(i.e. the number of wind turbines). To sum up, the analytical
models with low fidelity are efficient but lack flow details, while
numerical models with high fidelity can generate high-quality
flow fields but the computational requirements are too high for
engineering applications.

In order to narrow the gap between these two kinds of wake
models, a series of Machine Learning (ML) methods especially
Deep Learning (DL) methods have been proposed over the re-
cent years. For example, ML algorithms have been widely em-
ployed to improve the accuracy of wind farm power predic-
tion with consideration of wake losses, including Long Short
Term Memory (LSTM) network [30], Artificial Neural Net-
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Nomenclature

Abbreviations

ABL Atmospheric Boundary Layer

ADM Actuator Disk Method

ALM Actuator Line Method

ANN Artificial Neural Network

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

Conv+BN Convolution + BatchNorm operations

CV Computer Vision

DL Deep Learning

FEM Feature Extraction Module

FFM Feature Fusion Module

GAN Generative Adversarial Network

GNN Graph Neural Network

GPR Gaussian Process Regression

HPC High-Performance Computing

LAM Linear Attention Mechanism

LES Large Eddy Simulation

LSTM Long-Short Term Memory

MAE Mean Absolute Error

ML Machine Learning

MLP Multilayer Perceptron

NREL National Renewable Energy Laboratory

NS Navier–Stokes

RANS Reynolds-Averaged Navier-Stokes

RMSE Root Mean Square Error

SCADA Supervisory Control and Data Acquisition

SCRTP Scientific Computing Research Technology Plat-
form

SF Super-Fidelity

SFNet Super-Fidelity Network

SOWFA Simulator fOr Wind Farm Applications

SR Super-Resolution

VAWT Vertical-Axis Wind Turbine

S ymbols

D The degradation mapping function

E The expected loss

F The super-fidelity model

Fl The low-fidelity input flow field

Fh The high-fidelity input flow field

F̂h The high-fidelity approximation

L The loss function

N The number of flow field pairs

n The number of flow field pairs in the test set

Nx The numbers of pixels in x dimension

Ny The numbers of pixels in y dimension

S f The freestream wind speed

Φ the regularization term

λ the tradeoff parameter of Φ(·)

θ the parameters of the super-fidelity model

δ the parameters of the degradation process

work (ANN) [31, 32], Convolutional Neural Network (CNN)
[33] and Graph Neural Network (GNN) [34]. The impacts of at-
mospheric turbulence and stability measurements on wind farm
power prediction were examined in [35]. Aside from power
prediction, ML algorithms have also been introduced and ap-
plied in wind farm wake modeling. In [28], the comparison
of three dimensionality reduction techniques for reducing the
flow field dimension was conducted, while a neural network
was adopted to forecast the reduced coefficients from the input
parameters. Furthermore, based on the Generative Adversarial
Network (GAN), a surrogate model trained by high-fidelity data
was developed for the wake predictions in [29], which can gen-
erate streamwise and spanwise velocity components simultane-
ously. In [36], by employing the ML method and RANS/ADM
coupling approach, a novel framework for turbine wake predic-
tions was proposed. The influence of Atmospheric Boundary

Layer (ABL) flows on wake effects was included in [25] for
the prediction of wake velocity. For cooperative yaw control, a
double-layer machine learning framework was proposed in [37]
using an ANN yawed wake model. The cumulative wake for a
wind farm was analyzed by [38] based on Gaussian Process Re-
gression (GPR) model. The local inflow information and wake
expansion feature were extracted and their relationship was es-
tablished by the random forest method in [17]. The random
forest was also introduced in order to reconstruct the wake flow
of the Vertical-Axis Wind Turbine (VAWT) [26].

The main limitation of the above methods is that the advan-
tages of both analytical models and numerical models are not
fully exploited. A brief summary of the main features of those
methods is provided in Table 1. To be specific, if only utilizing
the data of analytical models, even the most advanced machine
learning method can only predict the low-fidelity flow fields.
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Table 1: The main features of some recently developed wake models. Low-fidelity and High-fidelity represent the fidelity of the data used in the corresponding
research.

Reference Main contribution Wind turbine wake features
Low-fidelity High-fidelity Multiple turbines

[24] short-term wind speed prediction Yes No Yes
[10] 3D wakes No Yes No
[23] Evaluation of three ML algorithms No Yes No
[25] Impact of ABL flows No Yes No
[26] mean wake of H-rotor VAWTs No Yes No
[27] stochastic expansion of CFD No Yes Yes
[28] surrogate modeling No Yes Yes
[29] spanwise velocity prediction No Yes Yes

By contrast, if only utilizing the data of high-fidelity numeri-
cal models, the generalizability of machine learning methods
will be seriously limited by the number of available data sam-
ples. Due to the computational requirement, it is technically
infeasible to generate a large-scale high-fidelity dataset by nu-
merical models, which is especially true for utility-scale wind
farms with dozens of wind turbines. Therefore, the reliabil-
ity of machine learning methods trained on a small-scale high-
fidelity dataset is questionable, especially when generalizing it
to an untrained scenario (e.g. a new wind speed) without any
prior information. On the other hand, although the flow fields
generated by the low-fidelity analytical models do not contain
detailed flow features, the general features (such as the yaw ef-
fects and wind speeds) are well captured, which can serve as
the prior information for high-fidelity flow fields. In summary,
the analytical models can provide the basic status while the nu-
merical models can supply precise details of the flow fields.
Therefore, by fusing the information from both low-fidelity and
high-fidelity models, a novel wind farm wake model with strong
generalizability may be formed balancing the accuracy and the
efficiency. On the basis of the above consideration, the issue of
wake modeling is treated here from the Computer Vision (CV)
perspective and defined as a Super-Fidelity (SF) task, i.e. an
analog to the Super-Resolution (SR) task, which aims to fully
exploit the information from both analytical models and numer-
ical models.

The super-resolution task in CV aims to output high-
resolution images from the input low-resolution images [39].
It has been widely applied in real-world applications [40]. Sim-
ilarly, for the proposed super-fidelity task, the inputs are low-
fidelity flow fields generated by analytical models while the out-
puts are high-fidelity flow fields generated by numerical mod-
els. Different from the super-resolution task, the input and out-
put of the super-fidelity task are in the identical resolution but
of different fidelities. That is to say, the super-fidelity task tar-
gets fidelity rather than resolution. Thus, a novel Super-Fidelity
Network (SFNet) is proposed to model and address the defined
super-fidelity task as an image-to-image task. To be specific, to
maintain both the input and the output in the raw 2D format,
the CNN is adopted as the basic layer to construct the proposed
SFNet instead of the traditional Multilayer Perceptron (MLP).
The former can process the input in the 2D format, thereby
extracting the abundant spatial correlations among the pixels.

The latter normally reshapes the input into the 1D format first,
which would inevitably lead to the loss of spatial information.
Meanwhile, the flow convection and diffusion are ubiquitous
within wake flow fields. Thus, capturing such complicated and
non-local relationships is clearly beyond what CNN is capa-
ble of, as CNN, by design, focuses on only local patterns. To
model the long-range dependencies of the whole flow fields, the
Linear Attention Mechanism (LAM) [41] is then introduced to
build the SFNet. As a simplified dot-product attention mecha-
nism, LAM has shown its great potential in the computer vision
area. It can model the relationship of every pair of pixels in the
input image with O(N) complexity [42]. Therefore, the LAM
is employed to enable the SFNet to extract the non-local infor-
mation of the whole flow fields. The main contributions of this
paper are summarized below:

(1) To rapidly and accurately predict wake effects within wind
farms, a novel super-fidelity task is defined to generate
high-fidelity flow fields from low-fidelity inputs. The back-
ground is that high-fidelity data are usually finite and ex-
pensive while low-fidelity data are normally abundant and
cheap. The target of the super-fidelity task is to design and
train a model that can learn the mapping relationships using
limited flow field pairs. Thereafter, the trained model can
be generalized to those low-fidelity data without the corre-
sponding high-fidelity pairs. In this way, the accuracy of
the low-fidelity data can be enhanced, which is greatly use-
ful for engineering applications such as wind farm layout
optimization.

(2) From the computer vision perspective, a benchmark named
Super-Fidelity Network is proposed to address the super-
fidelity task. The numerical results show that, com-
pared with high-fidelity data, the Root Mean Square Er-
ror (RMSE) predicted by the proposed method is just 4.3%
trained on only 9 flow field pairs. The RMSE can be further
optimized to only 2.8% using 45 flow field pairs.

(3) The generalizability of the proposed SFNet in wind speeds,
yaw angles and array column extensions is comprehen-
sively evaluated and verified through simulation tests. Fur-
thermore, the test on a wind farm with 10 × 10 turbines
demonstrates that our method can maintain stability and ro-
bustness for large-scale wind farms.

The remaining part of this paper is organized as follows: the
problem formalization, the dataset generation and the proposed
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Fig. 1. An overview of the Super-Fidelity Network, (a) network architecture, (b) the Feature Extraction Module (FEM), and (c) the Feature Fusion Module (FFM).
Note that Conv+BN means the Convolution + BatchNorm, LAM denotes the Linear Attention Mechanism, Conv signifies the Convolution layer, Add indicates the
Add operation, Concat represents the Concatenate operation, and Mul is the Multiplication operation.

SFNet are described in Section 2. Thereafter, the numerical
experiments are reported and discussed in Section 3. The con-
clusions are finally drawn in Section 4.

2. Methodology

2.1. Problem formalization

The super-fidelity task formulated in this work aims at re-
constructing the high-fidelity flow fields from the correspond-
ing low-fidelity inputs. Generally, the low-fidelity flow field Fl

can be modeled as the output of the following process (known
as the degradation in the computer vision community):

Fl = D(Fh; δ) (1)

where D denotes a degradation mapping function, Fh repre-
sents the corresponding high-fidelity flow field and δmeans the
parameters of the degradation process. For the super-resolution
task, the degradation process is normally unknown. But for
super-fidelity, the degradation process is caused by the differ-
ent principles of analytical wake models and numerical wake
models. Specifically, the former generates the low-fidelity flow
fields based on analytical formulations, while the latter gener-
ates the high-fidelity flow fields by solving the NS equations
using numerical methods. Similar to the super-resolution task,
only the low-fidelity flow fields generated by analytical wake
models are available in the vast majority of cases. Then, the
target of the super-fidelity task is to recover the approximation

F̂h of the high-fidelity flow field Fh from the low-fidelity input,
following:

F̂h = F (Fl; θ) (2)

where F is the super-fidelity model and θ represents the pa-
rameters of F . Hence, given a super-fidelity model F , the
target is to narrow the gap between the approximation F̂h and
the high-fidelity flow field Fh as close as possible by optimizing
the parameters θ:

θ∗ = arg min
θ

E(θ),

E(θ) =
∑N

n=1
L (Fh, F̂h) + λΦ(θ), (3)

L (Fh, F̂h) = L (Fh,F (Fl; θ)),

where E(θ) means the expected loss, the loss function
L (Fh, F̂h) measures the disparity between the high-fidelity ref-
erences and the predicted results,Φ(θ) is the regularization term
weighted by the tradeoff parameter λ, and N represents the
number of flow field pairs.

2.2. Dataset of flow field pairs

As illustrated in the problem formalization, the dataset for
the super-fidelity task includes two parts: the low-fidelity flow
fields as the input and the high-fidelity flow fields as the refer-
ence.
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Table 2: The detailed setting of each layer in the proposed SFNet.
Name Input size Output size Kernel Channel Stride Padding

Conv+BN1 1 × 30 × 50 32 × 30 × 50 (3, 3) 32 (1, 1) (1, 1)
Conv+BN2 32 × 30 × 50 32 × 30 × 50 (3, 3) 32 (1, 1) (1, 1)

FEM
Conv 32 × 30 × 50 32 × 30 × 50 (1, 1) 32 (1, 1) (0, 0)

Conv+BN 32 × 30 × 50 32 × 30 × 50 (3, 3) 32 (1, 1) (1, 1)
LAM 32 × 30 × 50 32 × 30 × 50 - 32 - -

FFM Conv+BN 96 × 30 × 50 96 × 30 × 50 (3, 3) 96 (1, 1) (1, 1)
LAM 96 × 30 × 50 96 × 30 × 50 - 96 - -

Conv+BN3 96 × 30 × 50 32 × 30 × 50 (3, 3) 32 (1, 1) (1, 1)
Conv1 32 × 30 × 50 8 × 30 × 50 (3, 3) 8 (1, 1) (1, 1)
Conv2 8 × 30 × 50 1 × 30 × 50 (1, 1) 1 (1, 1) (0, 0)
Dense 1 × 1500 1 × 1500 - - - -

For high-fidelity data, the LES flow solver SOWFA (Simu-
lator fOr Wind Farm Applications) [43] developed by the Na-
tional Renewable Energy Laboratory (NREL) is employed to
solve the filtered NS equations. The simulation domain is
3000 × 3000 × 1000 m, where the inflow wind comes from the
southwest direction. For the mesh generation, the two-level lo-
cal mesh refinement is adopted, where the outer mesh dimen-
sion, inner mesh dimension and the dimension of the mesh in
between are 12 × 12 × 12 m, 3 × 3 × 3 m and 6 × 6 × 6 m,
respectively. The total number of cells is 1.8 × 107 to guar-
antee a 3 m mesh size around the turbine rotors, thereby cap-
turing the detailed turbine wake dynamics. To investigate flow
fields both for freestream and upstream wake conditions, three
NREL 5 MW baseline turbines [44] operating in a row are sim-
ulated, where the 2D mean velocity field around each turbine
at the turbine hub height is extracted from the simulation data.
In order to include a wide range of operating conditions, three
freestream mean wind speeds at 8 m/s, 9 m/s and 10 m/s are
considered where each inflow condition contains 30 simulations
with different yaw angles in the range of [−30◦, 30◦]. Thus, 90
large eddy simulations have been carried out in total, thereby
generating 270 turbine samples. More details about the simula-
tion can be referred to Ref. [28].

For low-fidelity data, the Gaussian analytical wake model
implemented in FLORIS [5] is adopted. Specifically, 270 cor-
responding low-fidelity samples are generated under the same
configuration as SOWFA. To be specific, three NREL 5 MW
baseline turbines operating in a row are simulated under 8 m/s, 9
m/s and 10 m/s wind speeds with the same yaw angles used for
SOWFA. Other operating parameters are also set as the same as
SOWFA, such as the air density (1.225), the freestream turbu-
lence intensity (0.06) and the tip speed ratio (8.0).

2.3. Super-Fidelity Network

To address the super-fidelity task formulated by Eq. (3),
the Super-Fidelity Network is designed and built by Convolu-
tion + BatchNorm operations (Conv+BN), the Feature Extrac-
tion Modules (FEM) and the Feature Fusion Module (FFM).
As shown in Fig. 1, the input low-fidelity flow field is first
processed by Conv+BN1 and Conv+BN2. Then, the obtained
feature maps are successively extracted by three FEMs, while
the outputs of FEMs are concatenated and then fused by FFM.

Thereafter, the fused feature maps are fed into the Conv+BN3,
while the extracted features are further processed by two con-
volutional layers, i.e. the Conv1 and Conv2. Finally, a densely
connected layer is attached to generate the high-fidelity approx-
imation.

As an inherently chaotic flow system, the convection and
diffusion phenomena are omnipresent in the turbulent wakes.
Thus, the relationships between the local areas and global ar-
eas are both important for accurately predicting the wake ef-
fects. Especially, the correlations of local areas and global ar-
eas can be seen as the local spatial details and global contex-
tual information for computer vision tasks respectively. There-
fore, the convolutional layers alone cannot fully capture the
non-local relationships, as the CNN mainly extracts local pat-
terns and lacks the ability to model long-range context. In or-
der to address this issue, the feature extraction module is de-
signed which comprises a local branch and a global branch as
shown in Fig. 1(b). Specifically, the local branch is a rela-
tively simple structure with a convolutional layer and a batch
norm layer. For the global branch, the input feature maps are
fed into a convolutional layer and then processed by the linear
attention mechanism to extract the long-range and non-local re-
lationships. The linear attention mechanism [41] is an improved
version of the traditional dot-product attention mechanism [45],
while the latter has been widely applied in vision-related and
language-related tasks benefiting from its strong capabilities in
capturing global dependencies [46]. However, the memory and
computational costs of the dot-product attention mechanism in-
crease quadratically with the size of the input over space and
time, hugely hindering its potential in engineering applications.
Therefore, in our previous work [41], we improved the attention
mechanism based on the Taylor approximation and proposed
the linear attention mechanism with linear complexity, whose
effectiveness and efficiency have been verified in vision-related
tasks [42]. The detailed mathematical explanation and calcu-
lation efficiency are given in [41, 42]. Based on the above de-
sign, the local relationships can be extracted by the local branch
while the global relationships can be captured by the global
branch.

In the proposed SFNet, three feature extraction modules are
attached successively, while the outputs are concatenated and
aggregated by the feature fusion module. The structure of the
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Fig. 2. The predicted flow fields and the corresponding error distributions using FLORIS and SFNet under different training samples, at an example case where the
mean inflow wind speed is 8 m/s.

feature fusion module can be seen in Fig. 1 (c), where the con-
catenated feature maps are first processed by a Conv+BN block
and extracted by the LAM operation. Thereafter, the output of
the Conv+BN block is multiplied by the output of the LAM op-
eration which is then added with the multiplied feature maps.
The details of each component in the SFNet are provided in
Table 2.

2.4. Model training

For model training, the Mean Squared Error (MSE) is se-
lected as the loss function:

L (Fh, F̂h) =
1

Nx × Ny

∑Nx

i=1

∑Ny

j=1
(F i, j

h − F̂h
i, j)2 (4)

where F i, j
h and F̂h

i, j indicate the value of the flow field at the
position (i, j) obtained by SOWFA and the SFNet respectively,
while Nx and Ny represent the numbers of pixels in x and y
dimensions. By minimizing L (·), the network is driven to ap-
proximate the high-fidelity flow fields as much as possible.

The model is optimized by the Adam optimizer with a batch
size of 16 and a learning rate of 3 × 10−4. To enhance the gen-
eralizability of the model, the flow field pairs are augmented by
horizontal flip, vertical flip and random rotation from −10◦ to
10◦. The probabilities to conduct those augmentation strategies
for a pair are all set as 0.1.

2.5. Evaluation metrics
For all experiments, the performance of the super-fidelity re-

sults is measured by Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE):

MAE =
1

Ntest

∑Ntest

n=1

∣∣∣Fh − F̂h

∣∣∣ (5)

RMS E =

√
1

Ntest

∑Ntest

n=1
(Fh − F̂h)2 (6)

where F̂h is the approximation predicted by the SFNet model,
Fh is the reference high-fidelity flow field and Ntest is the num-
ber of samples in the test set. The metrics are then normalized
by the corresponding freestream wind speeds to obtain the rel-
ative errors:

MAE(%) =
MAE

S f
× 100% (7)

RMS E(%) =
RMS E

S f
× 100% (8)

where S f means the freestream wind speed.

3. Results and discussions

To comprehensively analyze the performance of the pro-
posed SFNet, the ablation study is first carried out to demon-
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Fig. 3. The predicted flow fields and the corresponding error distributions using FLORIS and SFNet under different training samples, at an example case where the
mean inflow wind speed is 9 m/s.

strate the validity of each novel component in our model. Then,
the prediction errors on the test set using different training sam-
ples are calculated to evaluate the effectiveness of our model
under different training scenarios. Thereafter, quantitative eval-
uations to verify the generalizability are carried out for wind
speeds, yaw angles and array column extensions. Finally, a case
study is carried out to demonstrate the ability of the proposed
SFNet in simulating a large-scale wind farm.

3.1. Ablation study

Table 3: The ablation study about the FEM and FFM in the proposed SFNet.
Training samples Model MAE (m/s) RMSE (m/s)

9

MLP 0.357 0.509
Baseline1 0.327 0.471
Baseline2 0.288 0.415

SFNet 0.272 0.386

27

MLP 0.247 0.361
Baseline1 0.233 0.338
Baseline2 0.227 0.332

SFNet 0.224 0.325

45

MLP 0.197 0.285
Baseline1 0.192 0.281
Baseline2 0.179 0.265

SFNet 0.174 0.256

To address the super-fidelity task, instead of directly adopt-

ing the traditional machine learning method such as MLP, the
CNN-based SFNet is proposed with two novel modules, i.e.
FEM and FFM. Intuitively, both the input and the output of the
super-fidelity task are in 2D matrix format rather than 1D array
format. With MLP, the samples need to be reshaped into 1D ar-
ray format. In this way, the spatial correlations will be unavoid-
ably eliminated during the reshaping operation. By contrast,
with the convolutional operation, the intact spatial information
will be retained and captured. But the initial design philoso-
phy of the CNN determines what it can do is to extract the local
spatial relationships within its limited receptive field. Consider-
ing the universality of the convection and diffusion phenomena
in the wind farm, the local relationships are clearly not enough
to model the spatial corrections of the complex wake effects.
Thus, two novel modules are designed in the proposed SFNet,
i.e. FEM and FFM, to further extract and fuse the feature maps.

To demonstrate the advantage of CNN structure as well as the
validity of FEM and FFM, a series of ablation studies are con-
ducted. Specifically, the FFM and the global branch of FEM
(the branch contains the LAM) are removed to build Baseline1.
Then, only the FFM of SFNet is removed to build Baseline2.
Also, the MLP is implemented for comparison whose parame-
ter count is roughly the same as the SFNet. The experiments are
conducted under three conditions with different training sam-
ples which can be seen in Table 3. As can be seen, benefit-
ing from the intact spatial information, even the basic baseline
(Baseline1) can provide flow fields better than MLP. However,
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Fig. 4. The mean flow centerline for two example cases, predicted by FLORIS,
SFNet and SOWFA. SFNet#9, SFNet#18 and SFNet#45 represent the training
scenarios using 9, 18 and 45 samples respectively.

the performance gap will be narrowed with the increase in train-
ing samples. The above tendency illustrates that the increase of
training samples can offset the defect of algorithms to a certain
extent. As the long-range and non-local spatial relationships
can be extracted by the global branch of FEM, the performance
of Baseline2 is better than Baseline1. Similarly, the effective-
ness of FFM can be verified by the comparison between SFNet
and Baseline2.

3.2. Performance validation
To validate the effectiveness of the proposed method, the

SFNet is trained using different numbers of samples. To be
specific, as there are 30 simulations with 90 turbine samples for
each wind speed, 1, 2, 3, 4, 5, 10, 15, 20, and 25 cases from
each wind speed condition are selected for training and valida-
tion. Five cases from each wind condition (i.e. 45 samples in
total), which are not used in the training process, are used for
testing.

As can be seen from Table 4, trained on only 9 samples (in-
cluding 1 for validation to prevent the over-fitting issue), the
proposed SFNet can still deliver decent predictions with the
MAE of only 3.0% and the RMSE of only 4.3%. Apparently,
with the increase of training samples, the MAE and RMSE are
reduced gradually. When 45 samples are used for training, the
MAE and RMSE reach only 1.9% and 2.8% respectively.

To further illustrate the prediction performance, the results
for two cases under different wind speeds and yaw angles are

provided in Fig. 2 and Fig. 3, including the flow fields gener-
ated by the SFNet and the error distributions. As can be seen,
not only the far-wake fields but also the near-wake features are
successfully reconstructed by the SFNet, even when trained on
only 9 samples. Specifically, the main features of the flow field
including the wake deflection caused by the turbine yaw angle,
the wake recovery in the streamwise direction and the upstream
wake’s impact on the downstream flow field are all accurately
captured. Although the errors around the second and third tur-
bines are higher than those of the first turbine due to the more
complex wake conditions, this gap can be narrowed with the in-
crease of training samples. By contrast, even though the Gaus-
sian model in FLORIS provides a reasonable representation of
far-wake regions, there exists a clear discrepancy in the near-
wake flow fields for all three turbines.

The mean flow centerlines in Fig. 4 and velocity profiles in
Fig. 5 further reveal the error distributions of the low-fidelity
FLORIS data. Taking Case#1 in Fig. 4 as an example, the max-
imum discrepancy of the mean flow centerline reaches nearly
2.5 m/s for FLORIS data, while the maximum error of the
SFNet does not exceed 0.5 m/s even if only trained by 9 sam-
ples. In Fig. 5, the velocity profiles near the wake areas of the
low-fidelity FLORIS data are far away from the high-fidelity
SOWFA data. By contrast, the developed SFNet trained on only
9 samples is able to predict the turbine wake flows at all stream-
wise locations for both near wake and far wake areas, vital for
the accurate and reliable prediction of energy yields.

3.3. Generalizability
Although the proposed SFNet can clearly enhance the accu-

racy of low-fidelity flow fields when trained on only limited
high-fidelity samples, the significance of such a model will be
greatly reduced if it is only effective for those cases in the train-
ing set. Therefore, in this section, the generalizability of the
SFNet in wind speeds, yaw angles and array column extensions,
including both interpolations and extrapolations, are compre-
hensively demonstrated.

3.3.1. Generalizability in wind speeds
Three experiments are designed to demonstrate the general-

izability of the SFNet in wind speeds. The samples within the
whole dataset are divided into three groups according to their
freestream mean wind speeds: 8 m/s, 9 m/s and 10 m/s. There-
after, for each experiment, the proposed SFNet is trained and
validated under limited samples only in two groups, and then
tested by those samples from the remaining group. For exam-
ple, for the first experiment, 15 samples from the 8 m/s group
and 15 samples the from 9 m/s group are selected to train and
validate the model. Then, the performance of the trained model
is tested with all samples (90 samples in total) from the 10 m/s
group. As those samples with 10 m/s freestream mean wind
speed are totally unavailable during the training procedure, the
generalizability of the proposed SFNet from 8 m/s and 9 m/s
scenarios to 10 m/s scenario can be truly verified. The experi-
ments using 8 m/s and 10 m/s groups to test the 9 m/s group, as
well as using 9 m/s and 10 m/s groups to test the 8 m/s group,
are conducted in a similar way.
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Fig. 5. The velocity profiles for two example cases, predicted by FLORIS, SFNet and SOWFA. SFNet#9, SFNet#18 and SFNet#45 represent the training scenarios
using 9, 18 and 45 samples respectively.

Table 4: The results (including the prediction MAE and RMSE) using different numbers of training samples.
Training cases Training samples Test Samples MAE (m/s) RMSE (m/s) MAE (%) RMSE (%)

1 9 45 0.272 0.386 3.0 4.3
2 18 45 0.235 0.334 2.6 3.7
3 27 45 0.224 0.325 2.5 3.6
4 36 45 0.198 0.296 2.2 3.3
5 45 45 0.174 0.256 1.9 2.8

10 90 45 0.159 0.233 1.8 2.6
15 135 45 0.153 0.226 1.7 2.5
20 180 45 0.126 0.181 1.4 2.0
25 225 45 0.116 0.172 1.3 1.9

As shown in Table 5, although the test samples are totally
unseen during the training phase, both the MAE and RMSE are
still at a relatively low level for all three scenarios, especially
when considering the limited number of training samples (only
15 samples for each wind speed). Taking the second scenario
as an example, trained by samples under 8 m/s and 10 m/s, the
proposed SFNet can be generalized to those samples under 9
m/s with the MAE of only 2.1% and the RMSE of 3.1%. Ap-
parently, the errors will locate in a similar or lower range when
generalizing the SFNet to other wind speeds between 8 m/s and
10 m/s. The flow field results in Fig. 6 further illustrate the
generalizability of the SFNet in wind speeds.

3.3.2. Generalizability in yaw angles
Two experiments are designed to demonstrate the generaliz-

ability of the SFNet in yaw angles. In the first experiment, 30
samples whose yaw angles are located within [−20◦, 20◦] are
taken as the training set, while those samples with yaw angles
in [−30◦,−20◦] or [20◦, 30◦] are all used as the test set. Simi-

larly, 30 samples whose yaw angles are larger than 10◦ or less
than −10◦ are selected as the training set, while those samples
with yaw angles in [−10◦, 10◦] are all used as the test set. As
the yaw angles in the training set and test set are distributed
in totally different ranges, the generalizability of the proposed
SFNet in yaw angles can be verified.

As shown in Table 6, trained by a specific range of yaw an-
gles, the proposed SFNet can be generalized to those samples
with a different range of yaw angles with low prediction errors.
Further, these two experiments demonstrate that the SFNet can
be generalized to samples with larger or smaller yaw angles
compared with the training samples, respectively. Obviously,
the MAE and RMSE of the SFNet will reach a lower level
when predicting the yaw angles located in the training yaw an-
gle range, even though the training samples can only cover lim-
ited values of the potential yaw angles. Qualitative results in
Fig. 7 and Fig. 8 further demonstrate the generalizability of the
SFNet in yaw angles.
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Fig. 6. The predicted flow fields and the corresponding error distributions using FLORIS and SFNet under different training settings of wind speeds, at three example
cases.

Table 5: The results on the generalizability of the proposed SFNet in wind speeds.
Training speeds Test speed MAE (m/s) RMSE (m/s) MAE (%) RMSE (%)

8 m/s 9 m/s 10 m/s 0.214 0.318 2.1 3.2
8 m/s 10 m/s 9 m/s 0.187 0.278 2.1 3.1
9 m/s 10 m/s 8 m/s 0.185 0.272 2.3 3.4

Table 6: The results on the generalizability of the proposed SFNet in yaw angles.
Training yaw angles Test yaw angles MAE (m/s) RMSE (m/s) MAE (%) RMSE (%)

[−20◦, 20◦] [−30◦, 20◦] and [20◦, 30◦] 0.252 0.372 2.8 4.1
[−30◦,−10◦] and [10◦, 30◦] [−10◦, 10◦] 0.223 0.315 2.5 3.5
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Fig. 7. The predicted flow fields and the corresponding error distributions using FLORIS and SFNet at two example cases, where the SFNet is trained on samples
with yaw angles greater than 10◦.

Fig. 8. The predicted flow fields and the corresponding error distributions using FLORIS and SFNet at two example cases, where the SFNet is trained on samples
with yaw angles less than 20◦.
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Fig. 9. The predicted flow fields and the corresponding error distributions us-
ing FLORIS and SFNet at two example cases, where the SFNet is trained on
samples on the 1st and 2nd columns.

3.3.3. Generalizability in array column extensions
The whole simulation is carried out based on an array with

three turbines operating in a row (a 1 × 3 array). Thus, the
effectiveness of the model when extending to larger multiple
columns (such as 1 × 5 or 1 × 10 arrays), i.e. the generaliz-
ability of the model in column extensions, is unverified and un-
warranted. To demonstrate the generalizability of the SFNet in
extending to multiple columns, the training samples are divided
into three groups according to their columns: the first column,
the second column and the third column. Then, 15 samples in
the first column and 15 samples in the second column are se-
lected to train and validate the model, while whole samples lo-
cated in the third column are taken as the test set. That is to say,
the model is trained by limited samples from a 1 × 2 array and
then tested by the extended turbines on the third column. As
those extended turbines are not in the training set, the general-
izability of the SFNet in extending to more columns of turbines
can thus be verified.

As shown in Table 7 and Fig. 9, the proposed SFNet can be
generalized to the turbine which is not contained in the train-
ing set. Trained on only 30 samples from a 1 × 2 array, the
errors on the extended third turbine are only 3.4% measured by
MAE and 4.4% measured by RMSE. As for the extensions in
the spanwise direction, it is straightforward as the wake interac-
tions mainly take place in the streamwise direction. Therefore,
after verifying the generalization performance, the prediction
using the proposed SFNet for the utility-scale wind farms can

thus be carried out.

3.4. Model predictions

To demonstrate the effectiveness of the developed SFNet for
large-scale wind farm wake predictions, the low-fidelity flow
fields of a 10 × 10 wind farm is simulated using FLORIS as
the input. The yaw angles are randomly selected between
[−20◦, 20◦] for each turbine with the 9 m/s freestream mean
wind speed, while the SFNet trained on 45 samples is employed
for prediction. As illustrated in Fig. 10, the near-wake fea-
tures, wake interactions and yaw effects for all turbines are all
successfully reconstructed. In particular, the whole low-fidelity
data generation and model prediction procedure are conducted
on a single Intel Core i7-7700 CPU and completed within sev-
eral seconds. While on the other hand, if an LES model were
used, massive computing resources would be required for such
a large-scale wind farm. By contrast, what the SFNet needs
is only a limited set of high-fidelity data samples and a low-
fidelity analytical model. Then, the developed SFNet could de-
liver a decent flow fields prediction as rapid as the low-fidelity
model while retaining the features captured in the high-fidelity
model.

3.5. Discussions

As illustrated, the proposed SFNet has the ability to ac-
curately generate high-fidelity flow fields based on the low-
fidelity input even if trained on limited samples. Most impor-
tantly, the proposed pipeline for wake modeling is much more
computational-friendly than LES models. To be specific, the
high-fidelity flow fields generation procedure for each case re-
quires about 1.13 × 104 CPU hours which can be completed
within 44 hours using local HPC clusters with 256 processors.
Based on the comprehensive experiments, five training cases
are sufficient to guarantee the performance of the proposed
SFNet. Therefore, about 1.70 × 105 CPU hours are required to
simulate the high-fidelity flow fields under three different wind
speeds (five cases for each speed). Then, the high-fidelity wake
interactions for the utility-scale wind farm, such as the 10 × 10
wind farm in Fig. 10, can be predicted by our pipeline within
seconds using a standard desktop. In sharp contrast, if using an
LES model to simulate such a large-scale wind farm under var-
ious operating conditions, the computational requirement will
be enormous.

Considering both the accuracy and efficiency, the proposed
SFNet has great potential for practical applications. Specifi-
cally, the flow field can be predicted by the proposed SFNet
accurately for both far-wake and near-wake features. Thus,
the applications such as the wind farm energy yield prediction
which can be implemented with SOWFA, can also be imple-
mented with the proposed SFNet but more efficiently. Taking
the power generation prediction as an example, it is cubically
related to the wind speed. Thus, a small prediction error of the
flow fields will lead to a large error in power prediction. As
the substantial experiments showed, the proposed SFNet can
predict the flow fields much better than the analytical models
and meanwhile significantly faster than the numerical models.
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Table 7: The results on the generalizability of the proposed SFNet in array column extensions.
Training turbines Test turbine MAE (m/s) RMSE (m/s) MAE (%) RMSE (%)

1st 2nd 3rd 0.306 0.397 3.4 4.4

In summary, the proposed SFNet combines both the great effi-
ciency of the low-fidelity model and the high accuracy of the
high-fidelity model.

On the other hand, there also exist some limitations in the
proposed pipeline. First, the current pipeline focuses on bi-
fidelity data, and cannot take advantage of the dataset with three
or more levels of fidelities. In the future, the proposed SFNet
will be extended to address this issue where the model will be
trained to fuse information from various data sources. Second,
limited by the dataset volume, the proposed SFNet is currently
a two-dimensional wake model focusing on the flow fields at
the turbine hub height. The application of the proposed SFNet
in the three-dimensional scenario will be investigated in the fu-
ture.

4. Conclusions

In this work, a novel Super-Fidelity Network was proposed
for wind farm wake modeling, which, to the best of our knowl-
edge, is the first attempt to combine both low-fidelity analytical
wake models and high-fidelity numerical models through deep
learning methods. Taking the low-fidelity data generated by
analytical models as the input, the developed SFNet is able to
predict flow fields similarly as high-fidelity numerical models
after trained on limited samples. The numerical experiments
demonstrated that the proposed SFNet was able to significantly
enhance the low-fidelity input even when trained and validated
on only 9 samples. More importantly, the near-wake features,
which are normally oversimplified by the analytical models,
have been finely reconstructed by the developed SFNet.

Compared with the existing machine learning wake model-
ing methods, the clear advantage of the SFNet was the strong
generalizability. In our pipeline, the robust and consistent per-
formance of the SFNet for untrained scenarios was guaranteed
by the prior information provided by the low-fidelity input. A
series of numerical experiments demonstrated the stability and
generalizability of the developed method for extending to the
unseen range of wind speeds, yaw angles and array columns,
even if trained on a very limited number of samples. Moreover,
trained on only 45 samples, the SFNet is able to generate the
flow fields for a 10 × 10 wind farm successfully.

The future work may involve the use of the proposed SFNet
wake model for wind farm layout optimization. Another inter-
esting direction is to extend the SFNet to dynamic wind farm
wake modeling.
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