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Multi-Attention-Network for Semantic Segmentation
of Fine-Resolution Remote Sensing Images

Rui Li, Shunyi Zheng, Ce Zhang, Chenxi Duan, Jianlin Su, Libo Wang, and Peter M Atkinson

Abstract—Semantic segmentation of remote sensing images
plays an important role in a wide range of applications in-
cluding land resource management, biosphere monitoring and
urban planning. Although the accuracy of semantic segmentation
in remote sensing images has been increased significantly by
deep convolutional neural networks, several limitations exist
in standard models. First, for encoder-decoder architectures
such as U-Net, the utilization of multi-scale features causes the
underuse of information, where low-level features and high-
level features are concatenated directly without any refinement.
Second, long-range dependencies of feature maps are insuffi-
ciently explored, resulting in sub-optimal feature representations
associated with each semantic class. Third, even though the dot-
product attention mechanism has been introduced and utilized
in semantic segmentation to model long-range dependencies,
the large time and space demands of attention impede the
actual usage of attention in application scenarios with large-
scale input. This paper proposed a Multi-Attention-Network
(MANet) to address these issues by extracting contextual de-
pendencies through multiple efficient attention modules. A novel
attention mechanism of kernel attention with linear complexity
is proposed to alleviate the large computational demand in
attention. Based on kernel attention and channel attention, we
integrate local feature maps extracted by ResNet-50 with their
corresponding global dependencies and reweight interdependent
channel maps adaptively. Numerical experiments on two large-
scale fine-resolution remote sensing datasets demonstrate the
superior performance of the proposed MANet. Code is available
at https://github.com/lironui/Multi-Attention-Network.

Index Terms—fine-resolution remote sensing images, attention
mechanism, semantic segmentation.

I. INTRODUCTION

SSEMANTIC segmentation of remote sensing images (i.e.,
the assignment of definite categories to groups of pixels in

an image), plays a crucial role in a wide range of applications

This work was supported in part by the National Natural Science Foundation
of China (No. 41671452). (Corresponding author: Chenxi Duan.)

R. Li, S. Zheng and L. Wang are with School of Remote Sensing and
Information Engineering, Wuhan University, Wuhan 430079, China (e-mail:
lironui@whu.edu.cn; syzheng@whu.edu.cn).

Ce Zhang is with Lancaster Environment Center, Lancaster University,
Lancaster LA1 4YQ, U.K., and also with the U.K. Center for Ecology and
Hydrology, Lancaster LA1 4AP, U.K. (e-mail: c.zhang9@lancaster.ac.u.k).

C. Duan is with the State Key Laboratory of Information Engineering in
Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079,
China; chenxiduan@whu.edu.cn (e-mail: chenxiduan@whu.edu.cn).

Jianlin Su is with Shenzhen Zhuiyi Technology Company Ltd., Shenzhen
518054, China (e-mail: bojonesu@wezhuiyi.com).

Peter M. Atkinson is with the Lancaster Environment Center, Lancaster
University, Lancaster LA1 4YQ, U.K., also with the Geography and Environ-
mental Science, University of Southampton, Southampton SO17 1BJ, U.K.,
and also with the Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences, Beijing 100101, China (e-mail:
pma@lancaster.ac.uk).

such as land resources management, yield estimation and
economic assessment [1–5].

Vegetation indices are commonly used features extracted
from multispectral and hyperspectral images to characterize
land surface physical properties. The normalized difference
vegetation index (NDVI) [6] and soil-adjusted vegetation index
(SAVI) [7] highlight vegetation over other land resources,
whereas the normalized difference bareness index (NDBaI)
[8] and the normalized difference bare land index (NBLI)
[9] emphasize bare land. The normalized difference water
index (NDWI) [10] and modified NDWI (MNDWI) [11]
indicate water. These indices have been developed and applied
widely in the remote sensing community. Meanwhile, different
classifiers have been designed from diverse perspectives, from
traditional methods such as logistic regression [12], distance
measures [13] and clustering [14], to more advanced machine
learning methods such as the support vector machine (SVM)
[15], random forest (RF) [16] and artificial neural networks
(ANN) [17] including the multi-layer perception (MLP) [18].
These classifiers depend critically on the quality of features
that are extracted for pixel-level land cover classification.
However, this high dependency on hand-crafted descriptors
restricts the flexibility and adaptability of these traditional
methods [19].

Deep Learning (DL), a powerful approach to capture non-
linear and hierarchical features automatically, has had a signif-
icant impact on various domains such as computer vision (CV)
[20], natural language processing (NLP) [21] and automatic
speech recognition (ASR) [22]. In the field of remote sensing,
DL methods have been introduced and implemented for land
cover and land use classification [23, 24]. Compared with
vegetation indices, which are based on physical and math-
ematical concepts and hand-coded from spectral bands only,
DL methods can mine different kinds of information including
temporal periods, spectra, spatial context and the interactions
among different land cover categories [25].

For remotely sensed semantic segmentation, Fully Con-
volutional Network (FCN)-based methods [26] and encoder-
decoder architectures such as SegNet [27] and U-Net [28] have
been adopted widely. Generally, the FCN-based architectures
comprise a contracting path that extracts information from the
input image and generates high-level feature maps, and an
expanding path, where high-level feature maps are utilized to
reconstruct the mask for pixel-wise segmentation by the single
[26] or multi-level [28, 29] up-sampling procedures. Despite
their powerful representation capability, however, information
flow bottlenecks limit the potential of these multi-scale ap-
proaches [30]. For example, the low-level and fine-grained
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detailed feature maps generated by the encoder are concate-
nated with high-level and coarse-grained semantic information
generated by the decoder without any further refinement,
leading to inadequate exploitation and deficient discrimination
of features. Besides, the discriminative ability of the feature
representations might be insufficient for challenging tasks such
as semantic segmentation of fine spatial resolution remote
sensing images.

The utilization of context fusion at multiple scales is a
feasible solution [31–37], increasing the discriminative power
of feature representations. The multi-scale context information
can be aggregated using techniques such as atrous spatial
pyramid pooling [31, 32], pyramid pooling module [33], or
context encoding module [35]. Although context captured by
the above strategies is beneficial to characterizing objects at
different scales, the contextual dependencies for whole input
regions are homogeneous and non-adaptive, without consider-
ing the disparity between contextual dependencies and local
representation of different categories. Further, these multi-
scale context fusion strategies are designed manually, with
limited flexibility in modelling multi-context representations.
The long-range dependencies of feature maps are insufficiently
leveraged in these approaches, which may be of paramount
importance for remotely sensed semantic segmentation.

With strong capabilities to capture long-range dependen-
cies, dot-product attention mechanisms have been applied in
vision and natural language processing tasks. The dot-product-
attention-based Transformer has demonstrated state-of-the-art
performance in a majority of tasks in natural language pro-
cessing [21, 38–40]. The non-local module [41], a dot-product-
based attention modified for computer vision, has shown great
potential in image classification [42], object detection [43],
semantic segmentation [44] and panoptic segmentation [45].

Utilization of the dot-product attention mechanism often
comes with significant memory and computational costs,
which increase quadratically with the size of the input over
space and time. It remains an intractable problem to model
global dependency on large-scale inputs, such as video, long
sequences and fine-resolution images. To alleviate the sub-
stantial computational requirement, Child et al. [46] designed
a sparse factorization of the attention matrix and reduced
the complexity from O(N2) to O(N

√
N). Using locality

sensitive hashing, Kitaev et al. [47] reduced the complexity
to O(N logN). Katharopoulos et al. [48] represented self-
attention as a linear dot-product of kernel feature maps to
further reduce the complexity to O(N), and Shen et al. [49]
modified the position of the softmax functions.

In this paper, by comparison, we not only dramatically
decrease the complexity, but also amply exploit the potential of
the attention mechanism by designing a multilevel framework.
Specifically, we reduce the complexity of the dot-product
attention mechanism to O(N) by treating attention as a kernel
function. As the complexity of attention is reduced dramat-
ically by kernel attention, we propose a Multi-Attention-
Network (MANet) with a ResNet-50 backbone which explores
the complex combinations between attention mechanisms and
deep networks for the task of semantic segmentation using
fine-resolution remote sensing images. The performance of

the proposed algorithm is compared comprehensively with
various benchmarks. The major contributions of this research
are two-fold: 1) a novel attention mechanism involving kernel
attention with linear complexity is proposed to alleviate the
huge computational demand from attention module; 2) we
propose a novel Multi-Attention-Network (MANet) with a
multi-scale strategy to aggregate relevant contextual features
hierarchically. The MANet extracts global contextual depen-
dencies using multi-kernel attention.

II. RELATED WORK

A. Attention Inspired by Human Perception

Due to the overwhelming computational requirement for
perceiving surrounding scenes with detail equivalent to foveal
vision, the selective visual attention endows humans with the
ability to orientate rapidly towards salient objects in a sophis-
ticated visual scene [50] and choose a subset of the available
perceptual information before further processing. Inspired by
the human attention mechanism, substantial algorithms have
been developed over the last few decades [51–53].

Recently, a very large number of domains has been influ-
enced significantly by the wave of DL, which emphasizes end-
to-end hierarchical feature extraction in an automatic fashion.
Integration of DL with the attention mechanism has great
potential to transform the paradigm in this field. Attention
in DL could be regarded as a weighted combination of the
input feature maps, where the weights are hinged on the
similarities between elements of the input [54]. Given that
kernel learning [55] processes all inputs simultaneously and
order-independently by computing the similarity between the
inputs, attention could be interpreted as a kernel smoother
[56] applied over the inputs in a sequence, where the kernel
evaluates the similarity between different inputs. The formulae
and mathematical proofs can be found in [54].

B. Dot-Product Attention Mechanism

To enhance word alignment in machine translation, Bah-
danau et al. [57] proposed the initial formulation of the dot-
product attention mechanism. Subsequently, recurrences are
entirely replaced by attention in the Transformer [40]. State-
of-the-art records in most natural language processing tasks
demonstrate the superiority of attention mechanisms amongst
others. Wang et al. [41] modified dot-product attention for
computer vision and proposed the non-local module. This
method has been developed and applied to many tasks of
computer vision, including image classification [42], object de-
tection [43], semantic segmentation [44] and panoptic segmen-
tation [45]. These successful applications demonstrated further
the effectiveness and general utility of attention mechanisms.

C. Scaling Attention Mechanism

Besides dot-product attention, there exists another set of
techniques for scaling attention (or simply attention) in the
literature. Unlike dot-product attention which models global
dependency, scaling attention reinforces informative features
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Fig. 1. Illustration of the architecture of dot-product attention mechanism.

and whittles information-lacking features. In the squeeze-and-
excitation (SE) module [58], a global average pooling layer
and a linear layer are harnessed to calculate a scaling factor for
each channel, and then the channels are weighted accordingly.
The convolutional block attention module (CBAM) [59], and
selective kernel unit (SK unit) further boost the SE block’s
performance. The principles and purposes of dot-product at-
tention and scaling attention are entirely divergent. This paper
focuses on dot-product attention due to its superiority in many
computer vision and pattern recognition tasks.

D. Semantic Segmentation
FCN-based methods have brought tremendous progress and

evolution in semantic segmentation. DilatedFCN and En-
coderDecoder are two prominent directions followed by FCN.
In DilatedFCNs [31–36, 60], dilate or atrous convolutions are
harnessed to retain the receptive field-of-view, and a multi-
scale context module is utilized to cope with high-level feature
maps. Alternatively, EncoderDecoders [28, 29, 61–66] utilize
an encoder to capture multi-level feature maps, which are then
incorporated into the final prediction using a decoder.

DilatedFCN The dilated or atrous convolution [34, 60]
has been demonstrated to be an effective technology for
dense prediction and has achieved high accuracy in semantic
segmentation. In DeepLab [31, 32], the atrous spatial pyramid
pooling (ASPP), comprised of parallel dilated convolutions
with diverse dilated rates, is able to embed context informa-
tion, while the pyramid pooling module (PPM) enables PSP-
Net [33] to incorporate the contextual prior among different
scales. Alternatively, EncNet [35] utilizes a context encoding
module to exploit global context information. FastFCN [36]
further replaces the dilated convolutions with a joint pyramid
upsampling (JPU) module to reduce computational complex-
ity. To extract abundant contextual relationships, a dot-product
attention mechanism is attached to the DANet [44]. For further
differentiating the same-object-class contextual pixels from the
different-object-class contextual pixels, the object-contextual
representation (OCR) module is elaborated by the OCRNet
[67].

EncoderDecoder Skip connections are employed to inte-
grate the high-level features generated by the decoder and
the low-level features generated by the corresponding encoder,
which are the essential structure of U-Net [28]. In the recent
literature [61–63], the plain skip connections in U-Net are

substituted by more subtle and elaborate skip connections
which reduce the semantic gap between the encoder and
decoder. Meanwhile, the structural development based on
residual connections is also a promising direction [25, 64–
66]. Taking DeepLab V3 as the encoder, DeepLab V3+ [32]
combined the merits of DilatedFCN and EncoderDecoder in a
single framework.

E. Attention-based Networks for Semantic Segmentation

Based on dot-product attention as well as its variants,
various attention-based networks have been proposed to cope
with the semantic segmentation task. Inspired by the non-local
module [39], the Double Attention Networks (A2-Net) [68],
Dual Attention Network (DANet) [44], Point-wise Spatial
Attention Network (PSANet) [69], Object Context Network
(OCNet) [70], and Co-occurrent Feature Network (CFNet)
[71] were proposed for scene segmentation by exploring the
long-range dependency.

The computing resource required by dot-product attention
modules is normally huge, which severely limits the applica-
tion of attention mechanisms. Therefore, substantial researches
have been implemented which aim to alleviate the bottleneck
to efficiency and push the boundaries of attention, including
accelerating the generation process of the attention matrix
[67, 72–74], pruning the structure of the attention block [75],
and optimizing attention based on low-rank reconstruction
[76].

Meanwhile, another burgeoning research area for semantic
segmentation is how to embed the dot-product attention into
a Graph Convolutional Network (GCN) and optimize the
complexity of the attention [77–81].

III. METHODOLOGY

A. Definition of Dot-Product Attention

Supposing N and C denote the length of input sequences
and the number of input channels, respectively, where N =
H×W , and H and W denote the height and width of the input,
given a feature X = [x1,x2, ...,xN ] ∈ RN×C , dot-product
attention utilizes three projected matrices W q ∈ RDx×Dk to



4

Fig. 2. Details of the channel attention mechanism.

generate the corresponding query matrix Q, key matrix K and
value matrix V as:

Q = XWq ∈ RN×Dk ,

K = XWk ∈ RN×Dk ,

V = XWv ∈ RN×Dv .

(1)

where D(·) means the dimension of (·). Please note that the
shapes of Q and K are supposed to be identical. Therefore,
we use the same symbol to represent their shapes.

A normalization function ρ evaluates the similarity between
the i-th query feature qTi ∈ RDk and the j-th key feature
kj ∈ RDk by ρ(qTi kj) ∈ R1. Please note that the vectors in
this paper default to column vectors. Generally, as the query
feature and key feature are generated by diverse layers, the
similarities between ρ(qTi kj) and ρ(qTj ki) are not symmetric.
By calculating the similarities between all pairs of positions
and taking the similarities as weights, the dot-product attention
module computes the value at position i by aggregating the
value features from all positions based on weighted summa-
tion:

D(Q,K, V ) = ρ(QKT )V . (2)

The softmax is a standard normalization function as:

ρ(QKT ) = softmaxrow(QKT ). (3)

where softmaxrow indicates the application of the softmax
function along each row of the matrix QKT . The ρ(QKT )
models the similarities between all pairs of positions. How-
ever, as Q ∈ RN×Dk and KT ∈ RDk×N , the product
between Q and KT belongs to RN×N , leading to O(N2)
memory complexity and O(N2) computational complexity. As
a consequence, the high resource-demand of the dot-product
critically limits its application to large-scale inputs. One way
to solve this problem is to modify the softmax [49], and
another is to rethink the attention via the lens of the kernel.
An illustration of the architecture for the dot-product attention
mechanism is shown in Fig. 1, which captures the long-
range context information from feature maps generated by
the ResNet backbone and adds the refined features with the
original input by the skip connection.

B. Generalization of Dot-Product Attention Based on Kernel

Under the condition of the softmax normalization function,
the i-th row of the result matrix generated by the dot-product
attention module (equation 2) can be written as:

D(Q,K, V )i =

∑N
j=1 e

qikjvj∑N
j=1 e

qikj

(4)

From equation 4, we can see that the essence of the dot-
product attention mechanism is to averagely weigh the value
matrix V by eqikj , where sim(qikj) = eqikj measures the
similarity between the key matrix K and the query matrix
Q. Therefore, we can replace the softmaxrow function to a
generic form, thereby generalizing equation 4 as:

D(Q,K, V )i =

∑N
j=1 sim(qikj)vj∑N
j=1 sim(qikj)

, sim(qikj) ≥ 0, (5)

where sim(qikj) indicates the function calculating the sim-
ilarity between qi and kj . If sim(qikj) = eqikj , equation
5 is equivalent to equation 4. And sim(qikj) can be further
expanded as sim(qikj) = φ(qi)

Tϕ(kj), where φ(·) and ϕ(·)
can be considered as kernel smoothers [54] if φ(·) = ϕ(·).
Accordingly, the corresponding inner product space can be
defined as 〈φ(qi), ϕ(kj)〉.

Equation 4 can then be further rewritten as:

D(Q,K, V )i =

∑N
j=1 φ(qi)

Tϕ(kj)vj∑N
j=1 φ(qi)

Tϕ(kj)
, (6)

which can be simplified as:

D(Q,K, V )i =
φ(qi)

T
∑N

j=1 ϕ(kj)vj

φ(qi)
T
∑N

j=1 ϕ(kj)
. (7)

As K ∈ RDk×N and V T belongs to RDk×Dv , , which
reduces the complexity of the dot-product attention mechanism
considerably.

C. Kernel Attention Mechanism

We take φ(·) = ϕ(·) = softplus(·), where

softplus(x) = log(1 + ex). (8)

The reason why we select softplus(·) instead of ReLU(·) is
that the nonzero property of the softplus enables the attention
to avoid zero gradients when the input is negative. Then, the
similarity function can be embodied as:

sim(qikj) = softplus(qi)
T softplus(kj), (9)

thereby rewriting the equation 5 as:

D(Q,K, V )i =
softplus(qi)

T
∑N

j=1 softplus(kj)v
T
j

softplus(qi)
T
∑N

j=1 softplus(kj)
,

(10)
which can be further written in a vectorized form as:

D(Q,K, V ) =
softplus(Q)softplus(K)TV

softplus(Q)
∑

j softplus(K)Ti,j
, (11)

As
∑N

j=1 softplus(kj)v
T
j and

∑N
j=1 softplus(kj) can be

calculated and reused for each query, the time and memory
complexity of the proposed kernel attention mechanism based
on equation 11 is O(N) only.
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Fig. 3. The structure of (a) the proposed MANet, (b) the Attention block, (c) the ResBlock, and (d) the DeBlock.

D. Multi-Attention-Network

For the spatial dimension, as the computational complexity
of the dot-product attention mechanism exhibits a quadratic
relationship with the size of the input (N = H × W ),
we design an attention mechanism based on kernel atten-
tion,named KAM. For the channel dimension, the number
of input channels C is normally far less than the number of
pixels contained in the feature maps (i.e., C ≤ N ). Therefore,
the complexity of the softmax function for channels, i.e.,
O(C2), is not large according to equation 3. Thus, we utilize
the channel attention mechanism based on the dot-product
[44], named CAM (Fig. 2). Like the dot-product attention
mechanism, there exists a residual connection in the KAM and
CAM, adding output with the input features directly. Using
the kernel attention mechanism (KAM) and channel attention
mechanism (CAM) which model the long-range dependencies
of positions and channels, respectively, we design an attention
block to enhance the discriminative ability of feature maps
extracted by each layer. Features generated by the ResBlock
are fed into the KAM and CAM to refine the information
in positions and channels, respectively. Thereafter, the refined
feature maps are added directly to obtain the output of the
corresponding attention block whose structure can be seen in
Fig. 3b.

The structure of the proposed Multi-Attention-Network is
illustrated in Fig. 3. We harness ResNet-50 pre-trained on Ima-
geNet to extract feature maps. Specifically, five feature maps at
different scales acquired from the outputs of [Conv, ResBlock-

1, ResBlock-2, ResBlock-3, ResBlock-4] are adopted. The
lowest level feature Res-4 is up-sampled directly by the
DeBlock-4 which is comprised of a 3 × 3 deconvolution
layer with stride = 2 and two 1 × 1 convolution layers
before and after the deconvolution layer. The feature maps
generated by ResBlocks are then refined by corresponding
attention blocks and added with the up-sampled lower feature
maps. Subsequently, the fused features are up-sampled by
the DeBlocks correspondingly. Finally, the output of the last
DeBlock is up-sampled to the identical spatial resolution of
the input by employing a deconvolution operation and fed into
the final convolution layer to obtain the predicted segmentation
map.

IV. DATASET AND EXPERIMENTAL SETTING

A. Datasets

The effectiveness of the linear attention mechanism is tested
using the ISPRS Potsdam dataset and the ISPRS Vaihin-
gen dataset (http://www2.isprs.org/commissions/comm3/wg4/
semantic-labeling.html). Please note that there are two types
of ground truth provided in the ISPRS datasets: with and
without eroded boundaries. We conducted all experiments on
the ground truth with eroded boundaries.

Vaihingen The Vaihingen semantic labeling dataset is com-
posed of 33 images with an average size of 2494×2064 pixels
and a GSD of 5 cm. The near-infrared, red and green channels
together with DSM are provided in the dataset. There are

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
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16 images in the training set and 17 images in the test set.
We exploited ID: 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27,
29, 31, 33, 35, 38 for testing, ID: 30 for validation, and the
remaining 15 images for training. We did not use the DSM
in our experiments to reduce computation. Note that we use
only the red, green and blue channels in our experiments. For
training, we crop the raw images into 512× 512 patches and
augmented them via rotating on a random axis, resizing by
a random scale, flipping by the horizontal axis, flipping by
the vertical axis, and adding stochastic Gaussian noise. The
probabilities to conduct those augmentation strategies for a
patch are set as 0.15, 0.15, 0.25, 0.25, and 0.1, respectively.

Potsdam The Potsdam dataset contains 38 fine-resolution
images of size 6000 × 6000 pixels with a ground sampling
distance (GSD) of 5 cm. The dataset provides near-infrared,
red, green and blue channels as well as DSM and normalized
DSM (NDSM). There are 24 images in the training set and
14 images in the test set. Specifically, we utilize ID: 2 13,
2 14, 3 13, 3 14, 4 13, 4 14, 4 15, 5 13, 5 14, 5 15, 6 13,
6 14, 6 15, 7 13 for testing, ID: 2 10 for validation, and the
remaining 22 images, except image named 7 10 with error
annotations, for training. The process of the training dataset
is identical to that for Vaihingen.

B. Evaluation Metrics

The performance of MANet on the three datasets is eval-
uated using the overall accuracy (OA), the mean Intersection
over Union (mIoU), and the F1 score (F1), which are com-
puted on the accumulated confusion matrix:

OA =

∑N
k=1 TPk∑N

k=1 TPk + FPk + TNk + FNk

, (12)

mIoU =
1

N

N∑
k=1

TPk

TPk + FPk + FNk
, (13)

F1 = 2× precision× recall
precision+ recall

, (14)

where TPk, FPk, TNk and FNk indicate the true positive,
false positive, true negative, and false negatives, respectively,
for object indexed as class k. OA is calculated for all categories
including the background.

C. Experimental Setting

We select ResNet-50 pre-trained on ImageNet as the back-
bone for all comparative methods which are implemented
with PyTorch. The optimizer is set as the Adam with a
0.0003 learning rate and 4 batch sizes. All the experiments
are implemented on a single NVIDIA Tesla V100 GPU with
16 GB RAM. The cross-entropy loss function is used as
a quantitative evaluation coupled with backpropagation to
measure the disparity between the achieved segmentation maps
and the ground reference:

loss(p, y) = −y log(p)− (1− y) log(1− p), (15)

where p is the prediction generated by the network and y is
the ground reference.

Fig. 4. Computation (a) and memory (b) requirements under different input
sizes. The blue and orange bars depict the resource requirements of the kernel
attention and dot-attention, respectively. The calculation assumes D = Dv =
2Dk = 64. The figure is in log scale.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. The Complexity of Kernel Attention

We analyze the efficiency merit of kernel attention over
dot-product attention in both memory and computation in this
section. Given a feature X = [x1,x2, ...,xN ] ∈ RN×C , both
the dot-attention and kernel attention will generate the query
matrix Q, key matrix K, and value matrix V .

For the dot-attention, to compute the similarity using soft-
max function, we have to generate the N × N matrix by
multiplying the transposed key matrix K and value matrix
V , resulting in O(DkN

2) time complexity and O(N2) space
complexity. Thus, to compute the similarity between each pair
of positions, the dot-attention would occupy at least O(N2)
memory and require O(DkN

2) computation.
For kernel attention, as the softmax function is substituted

for kernel smoothers, we can alter the order of the commuta-
tive operation and avoid multiplication between the reshaped
key matrix K and query matrix Q. Therefore, we can calculate
the product between softplus(K)T and V first and then
multiply the result and Q with only O(dN) time complexity
and O(dN) space complexity.

Dot-attention and kernel attention are compared in terms of
resource consumption in Fig. 4. For a 64× 64× 64 input, the
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TABLE I
THE ABLATION STUDIES ON THE VAIHINGEN TEST SET.

Method Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%)
FCN 89.731 93.169 80.569 88.890 71.552 84.782 87.987 73.454
FCN+Attention1 91.379 94.271 82.757 89.337 78.267 87.202 89.424 77.221
FCN+Attention2 91.831 94.612 82.791 89.671 83.543 88.490 89.703 78.107
FCN+Attention3 91.898 94.801 83.692 89.268 83.019 88.536 89.895 80.050
FCN+Attention4 91.854 94.787 83.867 89.855 86.045 89.282 90.202 80.866
FCN+CAM 92.160 95.407 83.414 89.280 84.193 88.891 90.130 80.023
FCN+KAM 92.464 95.322 83.496 89.256 86.968 89.501 90.303 81.178
Proposed MANet 93.024 95.471 84.637 89.978 88.945 90.411 90.963 82.706

TABLE II
THE ABLATION STUDIES ON THE ON THE POTSDAM TEST SET.

Method Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%)
FCN 90.839 95.591 84.097 84.750 84.952 88.046 88.022 79.532
FCN+Attention1 90.880 95.267 85.845 87.113 93.682 90.557 88.682 83.689
FCN+Attention2 91.471 94.855 85.719 88.153 96.013 91.242 89.134 84.130
FCN+Attention3 92.036 95.207 86.820 87.446 95.155 91.333 89.558 84.252
FCN+Attention4 92.949 96.749 87.115 87.701 95.785 92.060 90.493 85.142
FCN+CAM 91.641 95.925 85.389 87.880 94.558 91.079 89.264 83.861
FCN+KAM 92.923 96.487 86.943 87.746 95.452 91.910 90.442 85.272
Proposed MANet 93.397 96.959 88.319 89.360 96.483 92.904 91.318 86.952

kernel attention yields a 21-fold saving of memory (69 MB to
3 MB) and an 89-fold saving of computation (3 GMMACC to
37 MMACC). With increasing input size, the gap widens. For
a 64×256×256 input, the dot-attention requires unreasonable
memory (17 GB) and computation (829 GMACC), while the
kernel attention utilizes merely 1/340 memory (51 MB) and
1/1417 computation (585 MMACC).

Fig. 5. Comparison of segmentation maps generated by FCN and our MANet,
where (a) and (b) are from the Vaihingen dataset while (c)-(e) are from the
Potsdam dataset.

B. Ablation Study

In the proposed MANet, attention blocks are used to exploit
global contextual representations and enhance the capability
for feature extraction. To evaluate the performance of each at-

tention block, we conduct ablation experiments using different
settings listed in Table I and Table II.

Table I shows the comparison of the ablation study on
the Vaihingen dataset which demonstrates that the utiliza-
tion of attention blocks increases the accuracy significantly
compared with the baseline FCN with DeBlocks (ResNet-
50), particularly for small objects, i.e., the Car. Even using
a single attention block to enhance the context information
could gain at least 1.44% improvement in OA, 2.42% in mean
F1-score, and 3.77% in mIoU. Moreover, low-level attention
blocks contribute more than those in high-levels as the former
contains rich context information. When all attention blocks
are attached, the remarkable 6.18% increase in OA, 5.63%
in mean F1-score, and 9.25% in mIoU are achieved. These
results demonstrate that our attention block brings significant
breakthough to semantic segmentation by exploiting global
context information from different perspectives.

The ablation study results of the Potsdam dataset are
reported in Table II. The utilization of a single attention
block increases >2.50% in mean F1-score, 0.66% in OA, and
4.16% in mIoU, while the accuracy increase brought in by all
attention blocks are 4.60% in mean F1-score, 3.03% in OA,
and 7.42% in mIoU, respectively.

To validate the effectiveness visually and qualitatively, we
present comparison of the segmented features generated by
FCN and our MANet in Fig. 5. Due to the limited receptive
field, the FCN generates the category of a specific pixel
in consideration of its a few neighborhoods only, leading
to visually fragmented maps and confusion of objects. By
contrast, the proposed attention block can model the global
dependency of all pixels in the input features, and capture
the global context information with enhanced segmentation
accuracy. Particularly, the complex contour of the Low veg-
etation is preserved completely by our MANet (Fig. 5 (d)).
Meanwhile, the category of Car generated by the proposed
MANet is classified effectively and superior to the FCN as
shown in Fig. 5 (b) and Fig. 5 (e).
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Fig. 6. Qualitative comparisons (1024× 1024 patches) between our method and baseline on Vaihingen test set.

C. Quantitative Comparison Diverse Methods

To further confirm the effectiveness of the proposed MANet,
we compare our method with state-of-the-art approaches pre-
sented in the literature. Specifically, the comparative methods
not only include the scaling attention mechanism i.e., SE
module [58] and CBAM [59] but also consider the simplified
dot-product attention mechanism i.e., EAM [49], FAM [48],
and LAM [25]. Meanwhile, peer algorithms designed for
remote sensing images are taken into comparison including
V-FuseNet [83], TreeUNet [85], DDCM-Net [82], EaNet [86],
and LANet [84]. Besides, several comparative networks pro-
posed for natural images are also taken into consideration,
including the DANet [44] which utilizes the conventional
dot-product attention mechanism and other receptive-field-
enlarging, i.e., PSPNet [33] as well as DeepLabV3+ [31].
Furthermore, our results are compared against recent models
based on transformers, i.e., BotNet [87] and ResT [88]. For
fair comparison, all experiments are conducted under the same
setting for training and testing. All methods are implemented
based on the same ResNet-50 backbone while the FCN-
based methods are equipped with DeBlocks. The detailed
segmentation accuracy on the Vaihingen dataset and Potsdam
dataset of each network is listed in Table III and Table IV,
respectively.

1) Comparison with Scaling Attention: The scaling atten-
tion mechanisms are designed to reinforce informative features
and reduce information-lacking features, instead of capturing
global context information such as dot-product attention mech-
anism. Hence, the scale attention and dot-product attention are
not identical. In our experiments, we compare the performance
of our method with two well-verified scaling attention mech-
anisms, i.e., SE module [58] and CBAM [59], and the results

are shown in Table V. As the CBAM [59] introduces the extra
channel scaling attention block compared with the SE module
[58], “+ CBAM” achieves higher accuracies compared with “+
SE”. In contrast, our MANet extracts global context correlation
from the feature maps. Experimental results demonstrate the
superiority of our method compared with scaling attention
mechanism.

2) Comparison with Simplified Dot-product Attention: As
both space and time consumption of the standard dot-product
attention mechanism increase quadratically with the input
size, several research has devoted to simplify the complexity
of the attention mechanism, including the efficient attention
mechanism (EAM) [49], the fast attention mechanism (FAM)
[48], and the linear attention mechanism (LAM) [25]. As
shown in Table VI, the proposed KAM achieves the best
accuracy compared with other simplified dot-product attention
mechanism, due to the appropriate simplified scheme adopted.

3) Comparison with other Comparative Networks: The
conventional dot-product attention mechanism is introduced in
DANet [44] to capture feature dependencies both in spatial and
channel dimensions, while PSPNet [33], DeepLabV3+ [31],
and EaNet [86] employ variants of spatial pyramid pooling
(SPP) to enlarge the receptive field. The proposed MANet
models the global context information in the input features
instead of expanding finite receptive fields by convolution
layers with different kernel sizes (e.g. SPP). Besides, we
capture the context information in multi-layers rather than in
the lowest layer only (e.g. DANet). Hence, the performance of
our MANet exceeds these comparative networks with a large
margin, which can be seen in Table VII.
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TABLE III
QUANTITATIVE COMPARISON RESULTS ON THE VAIHINGEN TEST SET.

Method Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%)
FCN 89.731 93.169 80.569 88.890 71.552 84.782 87.987 73.454
FCN+SE [58] 91.886 94.604 83.185 89.379 77.084 87.228 89.711 77.894
FCN+CBAM [59] 91.592 94.766 84.195 89.494 80.877 88.185 89.956 79.612
FCN+EAM [49] 92.450 95.075 83.743 89.479 86.231 89.396 90.324 80.747
FCN+FAM [48] 92.605 94.214 84.154 90.138 84.897 89.202 90.304 80.664
FCN+LAM [25] 92.075 94.820 83.420 89.730 83.626 88.734 90.047 80.505
DANet [44] 91.384 94.100 83.086 89.015 76.794 86.876 89.473 77.318
PSPNet [33] 91.383 94.196 83.050 88.713 75.021 86.473 89.358 76.784
DeepLabV3+ [31] 91.630 94.086 82.505 87.991 77.656 86.774 89.124 77.127
DDCM-Net [82] 92.700 95.300 83.300 89.400 88.300 89.800 90.400 -
V-FuseNet [83] 91.000 94.400 84.500 89.900 86.300 89.200 90.000 -
LANet [84] 92.410 94.900 82.890 88.920 81.310 88.090 89.830 -
TreeUNet [85] 92.500 94.900 83.600 89.600 85.900 89.300 90.400 -
EaNet [86] 91.711 94.857 84.228 90.060 82.036 88.578 90.252 79.825
BotNet [87] 92.220 94.482 83.968 89.573 82.927 88.634 90.155 79.885
ResT [88] 92.464 95.160 83.716 89.510 84.273 89.025 90.328 80.515
Proposed MANet 93.024 95.471 84.637 89.978 88.945 90.411 90.963 82.706

TABLE IV
QUANTITATIVE COMPARISON RESULTS ON THE POTSDAM TEST SET.

Method Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%)
FCN 90.839 95.591 84.097 84.750 84.952 88.046 88.022 79.532
FCN+SE [58] 91.647 96.118 86.078 88.009 95.077 91.386 89.598 85.380
FCN+CBAM [59] 92.719 96.127 85.773 88.217 95.827 91.733 89.898 85.648
FCN+EAM [49] 92.748 96.041 86.480 88.407 96.023 91.940 90.241 85.727
FCN+FAM [48] 92.580 96.127 86.787 88.165 95.792 91.890 90.179 85.417
FCN+LAM [25] 92.771 96.406 86.476 87.277 96.090 91.804 90.119 85.367
DANet [44] 91.944 96.348 86.003 87.673 86.010 89.596 89.728 81.399
PSPNet [33] 92.199 96.107 86.940 88.339 86.302 89.977 90.143 81.990
DeepLabV3+ [31] 92.093 95.282 85.549 86.537 94.813 90.855 89.176 84.235
DDCM-Net [82] 92.900 96.900 87.700 89.400 94.900 92.300 90.800 -
V-FuseNet [83] 92.700 96.300 87.300 88.500 95.400 92.040 90.600 -
TreeUNet [85] 93.100 97.300 86.600 87.100 95.800 91.980 90.700 -
LANet [84] 93.050 97.190 87.300 88.040 94.190 91.950 90.840 -
EaNet [86] 92.872 96.302 86.163 87.991 95.303 91.726 90.154 85.339
BotNet [87] 92.343 96.298 87.322 88.741 94.165 91.774 90.422 84.973
ResT [88] 91.139 95.106 86.296 87.267 94.627 90.887 89.128 83.500
Proposed MANet 93.397 96.959 88.319 89.360 96.483 92.904 91.318 86.952

TABLE V
COMPARISON WITH SCALING ATTENTION.

Dataset Method Mean F1 OA (%) mIoU (%)

Vaihingen

FCN 84.782 87.987 73.454
+ SE [58] 87.228 89.711 77.894
+ CBAM [59] 88.185 89.956 79.612
+ Ours 90.411 90.963 82.706

Potsdam

FCN 88.046 88.022 79.532
+ SE [58] 91.386 89.598 85.380
+ CBAM [59] 91.733 89.898 85.648
+ Ours 92.904 91.318 86.952

TABLE VI
COMPARISON WITH SIMPLIFIED DOT-PRODUCT ATTENTION.
Dataset Method Mean F1 OA (%) mIoU (%)

Vaihingen

FCN 84.782 87.987 73.454
+ EAM [49] 89.396 90.324 80.747
+ FAM [48] 89.202 90.304 80.664
+ LAM [25] 88.734 90.047 80.505
+ Ours 90.411 90.963 82.706

Potsdam

FCN 88.046 88.022 79.532
+ EAM [49] 91.940 90.241 85.727
+ FAM [48] 91.890 90.179 85.417
+ LAM [25] 91.804 90.119 85.367
+ Ours 92.904 91.318 86.952

TABLE VII
COMPARISON WITH OTHER COMPARATIVE NETWORKS.

Dataset Method Mean F1 OA (%) mIoU (%)

Vaihingen

FCN 84.782 87.987 73.454
+ DAB [44] 86.876 89.473 77.318
+ PPM [33] 86.473 89.358 76.784
+ ASPP [31] 86.774 89.124 77.127
+ LKPP [86] 88.578 90.252 79.825
+ DDCM [82] 89.800 90.400 -
+ PAM&AEM [84] 88.090 89.830 -
+ Ours 90.411 90.963 83.397

Potsdam

FCN 88.046 88.022 81.419
+ DAB [44] 89.596 89.728 81.399
+ PPM [33] 89.977 90.143 81.990
+ ASPP [31] 90.855 89.176 84.235
+ LKPP [86] 91.726 90.154 85.339
+ DDCM [82] 92.300 90.800 -
+ PAM&AEM [84] 91.950 90.840 -
+ Ours 92.904 91.318 86.952

D. Evaluation in Efficiency

We evaluate our kernel attention mechanism not only with
the standard dot-product attention mechanism but also the
scaling attention mechanism and the receptive-field-enlarging
modules in terms of the computation complexity measured
with GFLOPs (G), the number of parameters measured with
Millions (M), as well as the memory consumption measured
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Fig. 7. Qualitative comparisons (1024× 1024 patches) between our method and baseline on Potsdam test set.

TABLE VIII
COMPARISON WITH OTHER COMPARATIVE NETWORKS.

Method Complexity (G) Parameters (M) Memory (MB)
SE [58] 618.6 38.3 256
CBAM [59] 618.6 38.3 256
EAM [49] 154.7 9.4 288
FAM [48] 85.9 5.3 160
LAM [25] 85.9 5.3 160
DAB [44] 392.2 23.9 1546
PPM [33] 309.5 23.1 257
ASPP [31] 503.0 15.1 284
LKPP [86] 884.2 54.5 818
DDCM [82] 380.2 23.2 240
PAM&AEM [84] 157.6 10.4 489
Ours 85.9 5.3 160

with Megabytes (MB). Note, we evaluate the consumption of
the modules with the cost of 3× 3 convolution for dimension
reduction, and we do not consider the cost of backbone
to ensure the fairness of the comparison. As illustrated in
Table VIII, for input in the size of 2048 × 128 × 128, our
KAM requires 10× less GPU memory usage and significantly
reduces about 78% parameters and computation complexity
when compared with the DAB [44] based on the dot-product
attention mechanism. Besides, it can be seen that our KAM
is more efficient than other specially-designed modules when
processing fine-resolution feature maps.

E. Qualitative Analysis of the Segmentation Results

Examples of the predicted patches in the size of 1024×1024
are provided in Fig. 6 and Fig. 7, where regions with obvi-
ous improvement are highlighted by red boxes. Due to the
loss of spatial information, the segmentation maps generated
by FCN are ambiguous, particularly at the contour of ob-

jects. The utilization of scaling attention mechanisms, i.e.,
SE [58] and CBAM [59] brings limited accuracy increase.
Although receptive-field-enlarging networks like PSPNet [33]
and DeepLabV3+ [31] demonstrate enhanced segmentation in
confusing areas, the complex contour of the low vegetation
is not generated completely shown in Fig. 7. With atten-
tion blocks extracting global context information in multi-
layers, the proposed MANet not only reduces the incomplete
and irregular semantic objects, but also better preserves the
geometric details and complex contours. Specifically, the
geometry of buildings in Fig. 6 as well as the edges of
the low vegetation in Fig. 7 are preserved. Besides, there
are significant improvement in preserving the boundaries and
reducing fragmented segments.

F. Discussion on the Attention Mechanism

Selective visual attention endows humans with the ability
to orientate towards conspicuous objects over the visual scene
in a computationally efficient manner. Thus, the attention
mechanism, inspired by the biological mechanism, is intended
as a computationally efficient structure with configurable
flexibility. By representing the concept of attention via the
lens of the kernel [54], we design a kernel attention module
with O(N) complexity. The effectiveness and efficiency of the
proposed kernel attention is demonstrated consistently across
a wide range of quantitative experiments. We envisage the
demonstrated resource efficiency will encourage more perva-
sive and flexible combinations between attention mechanisms
and networks.
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VI. CONCLUSION

This paper proposes kernel attention to reduce the com-
plexity of the dot-product attention mechanism into O(N).
By integrating kernel attention and ResNet-50, we design a
Multi-Attention-Network (MANet) comprised of a multi-scale
strategy to incorporate semantic information at different levels,
together with self-attention modules to aggregate relevant
contextual features hierarchically. MANet exploits contextual
dependencies over local features producing increased accuracy
and computational efficiency. We implement a series of experi-
ments involving the complex task of semantic segmentation of
fine-resolution remote sensing images. MANet produces con-
sistently the best classification performance with the highest
accuracy. An extensive ablation study is conducted to evaluate
the impact of the individual components of the proposed
framework. Experimental results on ISPRS Vaihingen and
Potsdam datasets demonstrate that the performance of the
proposed framework greatly exceeds comparative benchmark
methods.
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