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Abstract

Accurate prediction of ocean waves plays an essential role in many ocean engineering applications, such as the control of wave
energy converters and floating wind turbines. However, existing studies on phase-resolved wave prediction using machine learning
mainly focus on two-dimensional wave data, while ocean waves are usually three-dimensional. In this work, we investigate, for
the first time, the phase-resolved real-time prediction of three-dimensional waves using machine learning methods. Specifically,
the wave prediction is modeled as a supervised learning task aiming at learning mapping relationships between the input historical
wave data and the output future wave elevations. Four frequently-used machine learning methods are employed to tackle this task
and a novel Dual-Branch Network (DBNet) is proposed for performance improvement. A group of wave basin experiments with
nine directional wave spectra under three sea states are first conducted to collect the data of 3D waves. Then the wave data are used
for verifying the effectiveness of the machine learning methods. The results demonstrate that the upstream wave data measured by
the gauge array can be used for control-oriented wave forecasting with a forecasting horizon of more than 20s, where the directional
information provided by the upstream gauge array is vital for accurately predicting the downstream wave elevations. In addition,
further investigations show that by using only local wave data (which can be easily obtained), the very short-term phase-resolved
prediction (less than 5s) can be achieved.

Keywords: 3D waves, Convolutional neural network, Machine learning, Multilayer perceptron, Phased-resolved wave forecasting,
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1. Introduction

As one of the main renewable energy sources, wave energy is
an important and promising low-carbon alternative to fossil fu-
els. Although many kinds of Wave Energy Converters (WECs)
have been designed and verified [1, 2], when compared to solar
and wind energy, wave energy is still far from being commer-
cially competitive [3]. One major challenge in further reducing
the cost of wave energy is the design of a control technique suit-
able for various sea states. To improve the control performance,
the preview-based hydrodynamic control [4, 5, 6] has been pro-
posed where the controller is designed to react in advance be-
fore the waves hit the WEC structures. It can significantly en-
hance the power generation of WECs [7]. For example, the
investigation of an Azura WEC under experimental conditions
showed that a 36% improvement in power generation could
be achieved by the Model Predictive Control (MPC) compared
with the standard fixed damping control [8]. However, the WEC
control is a non-causal optimal control problem [9] where the
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current control decision must be based on the future wave ex-
citation force [6]. Thus, the real-time forecasting of the wave
information is essential for executing energy-maximizing con-
trollers [10]. A feasible and promising scheme to obtain the
future wave excitation force is to compute it from wave eleva-
tion predictions [11, 12]. Indeed, as an essential technology in
WEC control design, wave elevation prediction has drawn a lot
of attention and has now become an active research area.

Based on the spectral transport and energy balance equa-
tions, the traditional phase-averaged wave forecasting method
aims at predicting the wave spectrum instead of the wave profile
shape [13]. The frequently-used third-generation models such
as WAVEWATCH III [14], SWAN [15] and WAM [16] can pro-
vide statistical quantities, such as sea states defined by 1-hour
or 3-hour statistics, including the significant wave height (Hs),
the peak spectral wave period (Tp) and the mean wave direction
[17]. Although meaningful guidance for the WEC design can
be derived from these works, they cannot be used in real-time
WEC control applications as the phase-resolved wave elevation
is unavailable [18].

The phase-resolved wave model has drawn more and more
attention in recent years, which is of particular interest for the
preview-based control of WECs [19]. To significantly enhance
the performance of the WEC controllers, a forecast with at least
a 20-second time horizon is usually required [20]. However,
achieving an accurate prediction for such a long-time horizon is
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Nomenclature

Abbreviations

2D Two-Directional

3D Three-Directional

ANN Artificial Neural Network

BN Batch Normalization

BNN Bayesian Neural Network

CBR CNN + BN + ReLU

CNN Convolutional Neural Network

CRNN Convolutional Recurrent Neural Network

DBNet Dual-Branch Network

GRU Gated Recurrent Unit

HF High Frequency

HOS Higher-Order Spectral

LSTM Long Short-Term Memory

MAE Mean Absolute Error

ML Machine Learning

MLP Multilayer Perceptron

MPC Model Predictive Control

NLS Non-Linear Schrödinger

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

RMSE Root Mean Square Error

SCRTP Scientific Computing Research Technology Plat-
form

SVM Support Vector Machines

WEC Wave Energy Converter

WG Wave Gauge

S ymbols

E The expected loss

F The ML model

Hs The significant wave height

I The whole number of predictions in the training set

l The historical time steps for the input

L The loss function

m The predicted time horizon using local wave infor-
mation

N The whole number of predictions in the test set

n The predicted time horizon using upstream wave in-
formation

T The current time step

Tp The peak spectral wave period

UF The reference future wave elevations measured by
wave gauges

ÛF The approximate future wave elevations predicted by
ML models

UH The input historical wave information measured by
wave gauges

Û 4
T+1:T+m The approximate future wave elevation of WG4

predicted by the ML model from time steps T + 1
to T + m

U 4
T−l:T The historical wave information measured by WG4

from time steps T − l to T

U 2,5,6,7,8
T−l:T The historical wave information measured by

WG2, WG5, WG6, WG7 and WG8 from time steps
T − l to T

û4
T+n The approximate wave elevation of WG4 predicted

by the ML model at time step T + n

u4
T−l The wave elevation measured by WG4 at time step

T − l

u2,5,6,7,8
T−l The wave elevation measured by WG2, WG5, WG6,

WG7 and WG8 at time step T − l

λ The tradeoff parameter of Φ(·)

θ The parameters of the ML model

Φ The regularization term

exceptionally challenging, which has become one of two essen-
tial barriers in practical applications for WEC control (the other
barrier is the physical implementation of the control system)
[21]. Although the models [22, 23] based on linear wave theory
can forecast the downstream wave elevation from the upstream
information in real-time, they are only effective for the very
short-term prediction and are limited to the sea states with small
steepness [17]. Thus, more and more non-linear approaches
such as Higher-Order Spectral (HOS) methods have been pro-

posed in recent years [24, 25]. For example, a novel wave fore-
cast model coupling ensemble Kalman filter and HOS method
was proposed in [24] and enhanced in [26] by simultaneously
estimating the ocean current field. In practice, restricted by the
intensive computational requirement of HOS, the reduced or-
der or approximate equations are usually considered efficient
alternatives [19]. For example, many prediction models are
based on the model equations, such as the weakly Non-Linear
Schrödinger (NLS) models [27, 28]. Typically, the high-order
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NLS equation is an order faster than the HOS method but is
less accurate, as the former normally assumes a narrow-banded
wave field and small steepness [28].

Recently, Machine Learning (ML), a data-driven method, has
shown great potential in automatically capturing non-linear and
hierarchical features. A series of ML-based studies have been
conducted to predict the statistical wave characteristics such as
the significant wave height [29, 30, 31], peak spectral wave pe-
riod [32, 33, 34] and wave speed [35]. The machine learning
method has also been applied to phase-resolved wave forecast-
ing. For example, in [19], a Convolutional Recurrent Neural
Network (CRNN) was proposed to predict non-linear dispersive
non-breaking wave evolution including rogue waves. The Ar-
tificial Neural Network (ANN) was adopted by [17] for unidi-
rectional wave prediction. The ANN model was also applied in
long-crest wave prediction [18] and verified under unknown sea
states [36]. Two forecast algorithms, including an ML-based
Support Vector Machines (SVM) regression, were used in [37]
to forecast wave elevations and wave excitation forces, which
were then applied for feed-forward control of offshore float-
ing wind turbines. The Bayesian Neural Network (BNN) was
also introduced and applied to phase-resolved real-time wave
prediction in [38], where both the aleatory and epistemic un-
certainties were thoroughly investigated. However, two critical
limitations hugely reduce their practical value in engineering
applications. First, a single model cannot handle different sea
states. For example, in [18], four ANN models were trained
respectively for four different sea states (i.e. sea state 4-7) and
then used to forecast the corresponding wave elevations. When
generalizing a trained model to an unknown sea state, the er-
ror would surge significantly (about 6 to 11 times compared to
the trained sea state) [36]. In [19], the performance of their
CRNN was only verified by sea state 6. Three ANN models
were trained for three different wave conditions in [39] based
on simulated multi-directional waves. Obviously, a universal
model that can cope with different sea states is better than mul-
tiple models for different scenarios, as the latter is not only
time-consuming but also error-prone. Second, the existing ML-
based phase-resolved forecasting works still mainly focus on
unidirectional waves, such as [17, 37]. In practice, ocean waves
are usually three-dimensional (3D) except for near-shore areas
where waves align due to shoaling [40]. Thus, the prediction of
3D ocean waves needs great attention.

As shown in Table 1, the existing phase-resolved wave fore-
casting methods based on deep learning mainly focus on 2D
wave data, where the only research involving 3D wave [39]
is still based on simulation data instead of more realistic tank
experiments. Moreover, most deep learning models for wave
forecasting can only handle a single sea state, while different
sea states need multiple and separately-trained models to pre-
dict. This issue seriously limits their practical use as the model
will need a pre-processing procedure to identify the state of the
input historical wave data. If the sea state was wrongly classi-
fied or the input data was not enough to be distinguished, then
the prediction accuracy would be very low as the adopted model
would not match the sea state (about 6 to 11 times lower com-
pared to the matched model for 2D waves [36]). To overcome

the above limitations of existing works, this paper employs four
ML-based methods and proposes a novel Dual-Branch Network
(DBNet) for the phase-resolved forecasting of 3D waves, where
the ML models are designed to handle multiple sea states simul-
taneously. To be specific, in this work, a group of wave basin
experiments is conducted first, where nine different directional
wave spectra under three sea states are generated. Then, four
frequently-used ML-based methods, including Gated Recurrent
Unit (GRU) network, Long Short-Term Memory (LSTM) net-
work, Multilayer Perceptron (MLP) and Convolutional Neural
Network (CNN), are trained and adopted to forecast the wave
elevation for all nine wave conditions under three sea states
without retraining multiple times. Further, by combining the
advantages of both MLP and CNN, a novel DBNet is proposed
with an MLP-based branch and a CNN-based branch for wave
prediction, which can predict future wave elevation with better
performance than the other four ML-based methods. As far as
we know, this work is the first attempt to apply machine learn-
ing for the phase-resolved real-time forecasting of 3D waves
based on wave tank experiments. The results of the experimen-
tal data show that the relative Root Mean Square Error (RMSE)
of the proposed DBNet is about 11.6% normalized by the sig-
nificant wave height (averaged for nine wave conditions), which
is much better than the scheme for unidirectional wave predic-
tion in [36] (where the problem itself is easier than the pre-
diction of 3D waves) which generalizes a trained model to un-
known sea states (14.7% on average). The main contributions
and novelties of this paper are summarized as follows:

(1) The phase-resolved real-time forecasting of 3D waves us-
ing machine learning methods is comprehensively investi-
gated. Two major limitations of existing works that signif-
icantly hinder the potential of ML-based wave prediction,
i.e. the generalization of the model to diverse sea states and
the prediction of 3D waves (the existing works based on
ML and wave tank experiments are all on 2D waves), are
both tackled in this paper. The comparison of the proposed
wave forecasting method with existing methods in the liter-
ature is summarized in Table 1.

(2) The performance of four frequently-used machine learning
methods, including GRU, LSTM, MLP and CNN, are in-
vestigated and verified for the phase-resolved forecasting
of 3D waves. Moreover, a novel DBNet is proposed to fur-
ther enhance the accuracy of ML-based methods which can
take advantage of both MLP and CNN.

(3) A series of wave tank experiments are conducted with nine
different directional wave spectra under three sea states.
The above five ML-based phase-resolved prediction mod-
els are then trained, validated and tested to learn the map-
ping relationships between the input historical wave data
and the output future wave elevations.

(4) Two types of input historical wave data are studied for pre-
dictions of 3D waves, i.e. the upstream wave informa-
tion measured by the gauge array and the local wave in-
formation measured by a single gauge. The quantitative re-
sults show that the former can enable the model to achieve
control-oriented phase-resolved prediction (more than 20s),
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Fig. 1. The layout of the wave basin experiments, where WG2, WG5, WG6, WG7 and WG8 constitute the pentagonal gauge array.

Table 1: The comparison of the proposed wave forecasting method with existing methods in the literature, where Multiple means multiple models are trained for
different sea states and Universal means a single universal model is trained for different sea states.

Reference Main contribution Wave and model features
Data generation Wave dimensions Model

[18] an ANN-WP model for prediction Tank experiments 2D Multiple
[36] the ANN-WP for unknown sea states Tank experiments 2D Multiple
[37] wave prediction for control Tank experiments 2D Multiple
[19] a CRNN model for prediction Numerical simulations 2D Multiple
[39] an ANN model for prediction Numerical simulations 2D & 3D Multiple
[17] an ANN model for prediction Numerical simulations 2D Universal
[38] the evaluation of prediction uncertainty Tank experiments 2D Universal

This work a DBNet model for 3D wave prediction Tank experiments 3D Universal

while the latter can achieve very short-term prediction (less
than 5s). Moreover, the significance of the directional in-
formation for phase-resolved forecasting is also demon-
strated.

The remaining part of this paper is organized as follows:
the wave basin experiments, the problem formalization and the
ML-based models are described in Section 2. The results are re-
ported and discussed in Section 3. The conclusions are finally
drawn in Section 4.

2. Methodology

2.1. Wave basin experiments

The wave basin experiments are conducted according to the
characteristics of the WaveHub test site located 16 km offshore
from Hayle on the north coast of Cornwall at the eastern edge
of the Atlantic Ocean with an average water depth of 50m. Two
High Frequency (HF) radars are installed to cover the same

ocean area to obtain the directional information of waves which
collect 3161 hourly high-quality directional wave spectra from
April 2nd, 2012 to December 4th, 2012. Then, the K-means
clustering technique is employed to obtain a small number of
conditions that can represent the characteristics of the mea-
sured ocean area, where nine typical conditions clustered in
three groups are eventually determined. Based on the K-means
clustering results, those nine representative conditions are then
divided into three corresponding groups (one, three and five
spectrum/spectra in each group, respectively). After that, the
corresponding wave basin experiments are carried out based on
the representative conditions.

As shown in Fig. 1, eight Wave Gauges (WGs) are mounted
in the basin to measure the wave elevation. Nine representative
directional wave spectra are created using a single summation
method, which means each frequency component has a unique
wave direction. Based on MATLAB, the wave creation files for
different wave cases are created by defining the wave amplitude,
direction and phase angle with corresponding frequency com-
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ponents. Before the creation of the input file, each directional
wave spectrum is adjusted to guarantee that the dominant wave
direction is the same as the wave maker direction. The scale
ratio of the wave is 1:25 and the repeat time for the directional
wave generation is 45 minutes (3.75 hours in full scale with a
scaling factor of

√
25 using the Froude scaling law). For each

condition, about 3.5 × 105 points are sampled. The measured
values of the significant wave height (Hs) and the peak spec-
tral wave period (Tp) of each directional spectrum are shown in
Table 2.

Table 2: The measured Hs and Tp of nine directional wave spectra, which have
been transformed to the full scale.

Group Wave Condition Sea State Hs (m) Tp (s)
1 1 4 1.875 8.845

2
2 5 2.550 8.930
3 5 4.000 9.890
4 4 1.400 8.310

3

5 4 1.325 8.385
6 5 3.375 9.575
7 6 4.775 10.565
8 5 3.300 8.645
9 4 2.300 8.655

2.2. Problem formalization

Two different types of inputs, i.e. the historical wave infor-
mation measured by the upstream gauge array and by the local
gauge, are investigated for the phase-resolved forecasting of 3D
waves, which are illustrated in Fig. 2.

For the first scenario, as shown in Fig. 2(a), the historical
upstream wave information from time steps T − l to T measured
by the WG2, WG5, WG6, WG7 and WG8 is selected as the
input, while the downstream future wave elevation from time
steps T + 1 to T + n measured by WG4 is chosen as the output.
Then, the target of an ML-based model is to predict the future
wave elevation, i.e. from û4

T+1 to û4
T+n based on the historical

upstream wave information, i.e. from u2,5,6,7,8
T−l to u2,5,6,7,8

T , which
can be expressed as:

Û 4
T+1:T+n = F (U 2,5,6,7,8

T−l:T ; θ),

Û 4
T+1:T+n = (û4

T+1, û
4
T+2, ..., û

4
T+n), (1)

U 2,5,6,7,8
T−l:T = (u2,5,6,7,8

T−l , u2,5,6,7,8
T−l+1 , ..., u

2,5,6,7,8
T )

where F is the ML-based model and θ represents the param-
eters of F . l means the historical time steps and n indicates
the predicted future time steps. Û 4

T+1:T+n represents the future
wave elevation of WG4 predicted by the ML model from time
steps T + 1 to T + n, while U 2,5,6,7,8

T−l:T denotes the historical wave
information measured by WG2, WG5, WG6, WG7 and WG8
from time steps T − l to T .

For the second scenario, as shown in Fig. 2(b), the historical
local wave information from time steps T − l to T measured by
the WG4 itself is selected as the input, while the future wave
elevation from time steps T + 1 to T + m measured by WG4 is

chosen as the output. Then, the target of an ML-based model
is to predict the future wave elevation, i.e. from û4

T+1 to û4
T+m

based on the historical local wave information, i.e. from u4
T−l to

u4
T , which can be expressed as:

Û 4
T+1:T+m = F (U 4

T−l:T ; θ),

Û 4
T+1:T+m = (û4

T+1, û
4
T+2, ..., û

4
T+m), (2)

U 4
T−l:T = (u4

T−l, u
4
T−l+1, ..., u

4
T )

where m indicates the predicted future time steps. Û 4
T+1:T+m

represents the future wave elevation of WG4 predicted by the
ML model from time steps T +1 to T +m, while U 4

T−l:T denotes
the local historical wave information measured by WG4 itself
from time steps T − l to T .

Hence, given an ML-based model F , the target is to narrow
the gap between the predicted wave elevation approximation
and the real measured wave elevation as closely as possible by
optimizing the parameters θ:

θ∗ = arg min
θ

E(θ),

E(θ) =
∑I

i=1
L (UF , ÛF) + λΦ(θ), (3)

L (UF , ÛF) = L (UF ,F (UH; θ)),

where UF and ÛF represent the future wave elevations mea-
sured by the gauge and predicted by the ML model, while UH

means the input historical wave information. E(θ) indicates the
expected loss, where the loss function L (UF , ÛF) measures the
disparity between the real measured and predicted wave eleva-
tion and Φ(θ) is the regularization term weighted by the trade-
off parameter λ. I represents the whole number of predictions
in the training set.

2.3. Machine learning methods

As illustrated in Section 2.2, the input and output of the
phase-resolved wave forecasting are both time-series wave
elevations, which can be naturally modeled as a sequence-
to-sequence problem from the machine learning perspective
[41, 42]. Therefore, four frequently-used sequence-to-sequence
models, i.e. GRU, LSTM, MLP and CNN, are employed for re-
solving the wave forecasting problem. Meanwhile, to further
improve the accuracy, a novel DBNet is proposed which com-
bines the advantages of MLP and CNN.

2.3.1. LSTM and GRU
LSTM and GRU are two typical Recurrent Neural Networks

(RNNs), while RNNs are designed to address sequential data
with temporal dependencies such as text, audio and video. The
LSTM is proposed to overcome the short-term memory prob-
lem of RNN [43]. An additional memory cell is equipped to
store the information and three gates, i.e. input gate, output
gate and forget gate, are designed to control the inside state of
the LSTM cell. As a simple variant of LSTM, GRU only has
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Fig. 2. The phase-resolved real-time forecasting of 3D waves using (a) the wave information measured by the upstream gauge array and (b) the wave information
measured by the local gauge.

Fig. 3. The structure of the proposed DBNet, where FCLayer means the fully connected layer and CBR represents the convolutional layer with the BN operation
and the ReLU activation function.

two gates, named the update gate and the reset gate [44]. With-
out any extra memory cells to keep the information, what GRU
can control is only the information inside the unit. The number
and size of the hidden layer in the LSTM and GRU are set as 1
and 128 for the phase-resolved wave prediction.

2.3.2. MLP
As one of the most classical kinds of neural networks, MLP

consists of three layers, i.e. the input layer, the middle hid-
den layer and the output layer. Each layer constitutes several
neurons, while each connection between neurons has its own
weight. The information flows are unidirectionally transferred
from the input layer to the output layer, passing through the
hidden layers. Those perceptrons in the same layer share the
same activation function, which is usually a sigmoid function
for the hidden layer. The activation function for the output layer
depends typically on the practical application, which can be a
sigmoid or a linear function. The MLP used in the comparison
study is a three-layer structure with a sigmoid activation func-
tion after the second layer. The output sizes of the first two
layers of the MLP are 256 and 128, while the length of predic-
tion steps determines the output size of the third layer.

2.3.3. CNN
CNN is originally employed for image pattern recognition

with the ability to extract hierarchical features. Normally, CNN
is constructed by four different layers: convolutional layer, non-
linear activation layer, pooling layer and fully connected layer.
With a set of kernels, convolutional layers convolve the input
pixels, thereby generating the so-called feature map that sum-
marizes the presence of detected features in the input. Then,
the obtained feature map is activated by the element-wise non-
linear activation layers. Next, pooling layers aggregate adjacent
pixels based on the max or mean operation, which is not used
in our wave prediction task. Finally, each node in the previous
layer is directly connected to every node in the next layer by the
fully connected layer. For comparison, the structure of CNN is
designed the same as the CNN-branch (i.e. the CBR1, CBR2,
CBR3, Conv and FCLayer2 in Fig. 3 with the detailed setting
in Table 3) of the proposed DBNet.

2.3.4. DBNet
Obviously, both linear and non-linear relationships exist be-

tween the input historical wave information and output future
wave elevation. Thus, for phase-resolved forecasting of 3D
waves, a novel Dual-Branch Network is proposed where an ex-
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Table 3: The detailed setting of each layer in the DBNet where the wave elevations measured by the upstream gauge array are used as input.
Name Input size Output size Channel Kernel Stride Padding

CBR
Conv 1 × 5 × 300 4 × 5 × 300 4 (3, 7) (1, 1) (1, 3)
BN 4 × 5 × 300 4 × 5 × 300 4 - - -
ReLU 4 × 5 × 300 4 × 5 × 300 - - - -

Conv 4 × 5 × 300 1 × 300 1 (5, 3) (1, 1) (0, 1)
FCLayer1 1 × 5 × 300 1 × 300 - - - -
FCLayer2 1 × 300 1 × 85 - - - -

tra MLP-based branch is designed to be parallel with a CNN-
based branch for enhancing linear features and long-range de-
pendencies. The structure of the proposed DBNet can be seen
in Fig. 3.

The MLP-based branch is a relatively simple structure con-
structed with only a single fully connected layer without any
activation function, i.e. FCLayer1 in Fig. 3. Without the ac-
tivation function, the MLP is a linear regression model which
can only learn linear relationships in the data. Meanwhile, as all
input points are directly and fully connected by the MLP layer,
the long-range dependencies between the input can be then cap-
tured. On the other hand, for the CNN-based branch, three con-
volutional layers with the Batch Normalization (BN) operation
and the Rectified Linear Unit (ReLU) activation function, i.e.
CBR1, CBR2 and CBR3, are stacked. With the ReLU, the non-
linearity property can be introduced to the CNN-based branch.
Finally, the output of the CBR3 is fed into a convolutional layer
to reduce the number of feature map channels.

The features extracted by the MLP-based and CNN-based
branches are added first and then fed into the final fully con-
nected layer, i.e. FCLayer2, thereby generating the final future
wave elevation sequence. The details of each component within
the DBNet are provided in Table 3.

2.4. Model training

The data collected by the wave basin experiment are first re-
sampled on a scale of 8, generating about 45, 000 re-sampled
points. Then, each re-sampled point represents 0.3s in the real
world. Thereafter, 40% of the re-sampled points (the first 18.0
minutes of each wave condition) are selected as the training
set, 10% (18.0-22.5 minutes of each wave condition) for vali-
dation and 50% (the last 22.5 minutes of each wave condition)
for testing. For training the machine learning models, the Mean
Squared Error (MSE) is selected as the loss function:

L (U 4
T+1:T+n, Û

4
T+1:T+n) =

1
n

∑T+n

i=T+1
(u4

i − û4
i )2 (4)

By minimizing L (·), the model is driven to approximate the
real measured wave elevation as closely as possible.

2.5. Evaluation metrics

The performance of the ML-based models is evaluated by
Mean Absolute Error (MAE) to measure the mean absolute dif-
ference and Root Mean Squared Error (RMSE) to reflect the
square root of the average squared difference:

MAE =
1
N

∑N

i=1

∣∣∣UF − ÛF

∣∣∣ (5)

RMS E =

√
1
N

∑N

i=1
(UF − ÛF)2 (6)

where N is the whole number of predictions in the test set, while
UF and ÛF represent the measured and predicted future wave
elevations respectively. The metrics are then normalized by the
corresponding significant height to observe the relative errors:

MAE% =
MAE

Hs
× 100% (7)

RMS E% =
RMS E

Hs
× 100% (8)

3. Results and discussions

To comprehensively analyze the phase-resolved forecasting
of 3D waves, two prediction scenarios, i.e. wave forecasting us-
ing upstream information and local information, are designed.
In the first scenario, the performance of all five methods is thor-
oughly compared. Then, the significance of the directional in-
formation is verified by the comparative studies. Finally, the
impacts of the different lengths of input and output time hori-
zons are investigated. In the second scenario, using the local
wave information as the input, all five methods are compared
first and then the errors with different output future time hori-
zons are explored.

3.1. Wave forecasting using upstream information

In this part, wave forecasting using upstream information is
investigated. Specifically, the input of models is set as the his-
torical upstream wave information measured by the gauge ar-
ray, i.e. WG2, WG5, WG6, WG7 and WG8, while the target
output is the future wave elevation measured by WG4.

3.1.1. Performance of different methods
Five machine learning methods are trained by the data of all

nine wave conditions under three sea states. That is to say, each
model is designed to learn mapping relationships between input
and output for all nine wave conditions simultaneously instead
of training three different models for three sea states. In these
studies, the length of input points is set as 300 (90s in full scale)
and 85 for output (25.5s in full scale).
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Fig. 4. The error distributions of ML-based methods over the whole prediction time domain using upstream historical wave information measured by WG2, WG5,
WG6, WG7 and WG8, where the error for each time step is averaged over all the experimental wave data in the test set. (a)-(i) represent the nine wave conditions.

Fig. 5. The wave elevations measured in experiments (red) and the prediction results by DBNet (blue) during the 7400s to 7800s, where the inputs are the upstream
historical wave information measured by WG2, WG5, WG6, WG7 and WG8. (a)-(i) represent the nine wave conditions.
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Fig. 6. The wave elevations measured in experiments (red) and the prediction results by DBNet (blue) during the 7400s to 7800s, where the inputs are the upstream
historical wave information measured by WG2, WG7 and WG8. (a)-(i) represent the nine wave conditions.

Fig. 7. The wave elevations measured in experiments (red) and the prediction results by DBNet (blue) during the 7400s to 7800s, where the inputs are the upstream
historical wave information measured by WG2. (a)-(i) represent the nine wave conditions.
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Table 4: The prediction errors measured by MAE (m), RMSE (m), MAE% and RMSE% for all methods under nine wave conditions using upstream wave
information. Each method is trained, validated and tested ten times and then the means and standard deviations are reported. Please notice the MAE and RMSE are
transformed to the full scale.

Con. Method MAE RMSE MAE% RMSE%

1

GRU 0.17528 ± 0.00146 0.22353 ± 0.00168 9.348 ± 0.078 11.992 ± 0.090
LSTM 0.16986 ± 0.00166 0.21681 ± 0.00210 9.059 ± 0.089 11.563 ± 0.112
MLP 0.17756 ± 0.00079 0.22590 ± 0.00094 9.470 ± 0.042 12.048 ± 0.050
CNN 0.17587 ± 0.00146 0.22427 ± 0.00172 9.380 ± 0.078 11.961 ± 0.092
DBNet 0.16982 ± 0.00057 0.21704 ± 0.00068 9.057 ± 0.030 11.576 ± 0.036

2

GRU 0.23358 ± 0.00117 0.29686 ± 0.00162 9.160 ± 0.046 11.642 ± 0.063
LSTM 0.23086 ± 0.00172 0.29357 ± 0.00228 9.053 ± 0.068 11.513 ± 0.090
MLP 0.23035 ± 0.00064 0.29246 ± 0.00082 9.033 ± 0.025 11.469 ± 0.032
CNN 0.23611 ± 0.00190 0.29936 ± 0.00225 9.259 ± 0.075 11.740 ± 0.088
DBNet 0.22900 ± 0.00063 0.29079 ± 0.00081 8.980 ± 0.025 11.404 ± 0.032

3

GRU 0.37291 ± 0.00264 0.47972 ± 0.00337 9.323 ± 0.066 11.993 ± 0.084
LSTM 0.38649 ± 0.00574 0.49763 ± 0.00716 9.662 ± 0.143 12.441 ± 0.179
MLP 0.36157 ± 0.00132 0.46534 ± 0.00157 9.039 ± 0.033 11.633 ± 0.039
CNN 0.36894 ± 0.00305 0.47399 ± 0.00369 9.223 ± 0.076 11.850 ± 0.092
DBNet 0.35724 ± 0.00116 0.46019 ± 0.00141 8.931 ± 0.029 11.505 ± 0.035

4

GRU 0.14331 ± 0.00133 0.18155 ± 0.00169 10.237 ± 0.095 12.968 ± 0.120
LSTM 0.13547 ± 0.00177 0.17171 ± 0.00230 9.676 ± 0.126 12.265 ± 0.164
MLP 0.14465 ± 0.00070 0.18350 ± 0.00089 10.322 ± 0.050 13.107 ± 0.064
CNN 0.14141 ± 0.00115 0.17914 ± 0.00140 10.100 ± 0.082 12.796 ± 0.100
DBNet 0.13731 ± 0.00037 0.17408 ± 0.00047 9.808 ± 0.027 12.435 ± 0.033

5

GRU 0.13460 ± 0.00112 0.17076 ± 0.00128 10.159 ± 0.085 12.888 ± 0.096
LSTM 0.12573 ± 0.00143 0.15936 ± 0.00182 9.489 ± 0.108 12.027 ± 0.138
MLP 0.13581 ± 0.00070 0.17061 ± 0.00086 10.250 ± 0.053 12.876 ± 0.065
CNN 0.12979 ± 0.00082 0.16440 ± 0.00098 9.795 ± 0.062 12.408 ± 0.074
DBNet 0.12606 ± 0.00034 0.15976 ± 0.00043 9.514 ± 0.025 12.057 ± 0.032

6

GRU 0.30010 ± 0.00146 0.38391 ± 0.00201 8.892 ± 0.043 11.375 ± 0.059
LSTM 0.30250 ± 0.00277 0.38762 ± 0.00342 8.963 ± 0.082 11.485 ± 0.101
MLP 0.29169 ± 0.00081 0.37382 ± 0.00104 8.643 ± 0.024 11.076 ± 0.031
CNN 0.30098 ± 0.00268 0.38554 ± 0.00312 8.918 ± 0.080 11.423 ± 0.093
DBNet 0.29096 ± 0.00098 0.37358 ± 0.00119 8.621 ± 0.029 11.069 ± 0.035

7

GRU 0.46248 ± 0.00296 0.60028 ± 0.00428 9.685 ± 0.062 12.571 ± 0.090
LSTM 0.48255 ± 0.00936 0.62557 ± 0.01156 10.106 ± 0.196 13.101 ± 0.242
MLP 0.44957 ± 0.00193 0.58447 ± 0.00256 9.415 ± 0.041 12.240 ± 0.054
CNN 0.44456 ± 0.00324 0.57721 ± 0.00383 9.310 ± 0.068 12.088 ± 0.080
DBNet 0.43487 ± 0.00126 0.56505 ± 0.00151 9.107 ± 0.026 11.833 ± 0.032

8

GRU 0.31521 ± 0.00121 0.39941 ± 0.00162 9.552 ± 0.037 12.103 ± 0.049
LSTM 0.31813 ± 0.00171 0.40338 ± 0.00228 9.640 ± 0.052 12.224 ± 0.069
MLP 0.30688 ± 0.00071 0.38868 ± 0.00096 9.299 ± 0.022 11.778 ± 0.029
CNN 0.31537 ± 0.00348 0.39990 ± 0.00447 9.557 ± 0.105 12.118 ± 0.135
DBNet 0.30607 ± 0.00088 0.38793 ± 0.00114 9.275 ± 0.027 11.755 ± 0.035

9

GRU 0.21181 ± 0.00135 0.26933 ± 0.00149 9.209 ± 0.059 11.710 ± 0.065
LSTM 0.20713 ± 0.00148 0.26357 ± 0.00195 9.006 ± 0.064 11.460 ± 0.085
MLP 0.21177 ± 0.00072 0.26821 ± 0.00091 9.207 ± 0.031 11.662 ± 0.040
CNN 0.21464 ± 0.00199 0.27282 ± 0.00237 9.332 ± 0.086 11.862 ± 0.103
DBNet 0.20760 ± 0.00066 0.26401 ± 0.00080 9.026 ± 0.029 11.479 ± 0.035

Avg.

GRU 0.26103 ± 0.00163 0.33393 ± 0.00212 9.435 ± 0.059 12.070 ± 0.076
LSTM 0.26208 ± 0.00307 0.33547 ± 0.00387 9.473 ± 0.111 12.125 ± 0.140
MLP 0.25665 ± 0.00093 0.32811 ± 0.00117 9.277 ± 0.034 11.859 ± 0.042
CNN 0.25863 ± 0.00220 0.33074 ± 0.00265 9.348 ± 0.080 11.954 ± 0.096
DBNet 0.25099 ± 0.00076 0.32138 ± 0.00094 9.072 ± 0.027 11.616 ± 0.034
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As shown in Table 4, all ML-based models can perform rel-
atively well, especially considering the unavoidable noises dur-
ing the wave basin experiments. Although the MAE and RMSE
have considerable disparity for different wave conditions, the
relative errors, i.e. MAE% and RMSE% normalized by the sig-
nificant height, maintain the same level, demonstrating that the
normalized prediction errors are better metrics for overall per-
formance.

The prediction errors of two RNN models, i.e. GRU and
LSTM, are larger than other methods, whose average RMSE%
are about 12.1%. The reason is that it is still an extremely chal-
lenging task for RNNs to learn dependencies between distant
positions, especially for long input sequences, albeit LSTM and
GRU have been specifically optimized to resolve the short-term
memory problem. The results of MLP and CNN are slightly
better than RNN models and have similar error levels, which
are about 11.9% and 12.0% measured by RMSE%.

For the proposed DBNet, as the parallel structure combines
the advantages of both CNN and MLP, the errors measured
by MAE and RMSE are the lowest for all nine wave condi-
tions among five ML-based methods. As for the average er-
ror, the performance of the DBNet is about 0.2% better than
the sub-optimal MLP in MAE% and RMSE%. Most impor-
tantly, the developed DBNet is a computational-friendly model.
It takes only 2772s to complete the whole training procedure on
a standard desktop with a single Intel Core i7-7700 CPU and
32, 768 MB RAM, while the prediction for a 25.5s time hori-
zon only costs 0.865s (including the whole data processing and
model loading procedure) which obviously meets the real-time
requirement. As what most active control systems require is
about a 20-second future time horizon [20], a 25.5s prediction is
enough for the control-oriented wave elevation prediction, indi-
cating the huge potential of the proposed DBNet for the model
predictive control of WECs.

In Fig. 4, in order to visually identify the prediction accu-
racy of different ML-based wave prediction methods, the error
distributions over the whole prediction time domain, i.e. 85 pre-
diction points for 25.5s in the real world, are investigated. The
RMSE of the prediction results compared with the experimen-
tal values for five ML-based methods at different time horizons
are calculated and visualized, where the RMSE for each time
step is averaged over all the experimental wave data in the test
set. As can be seen, the error distribution tendencies of all ML-
based methods are quite similar for all nine wave conditions.
Specifically, the errors are relatively low and stable for the first
12.0s, which experience a gradual growth during 12.0s to 17.4s
and then grow rapidly and finally reach the peak at 25.5s where
the error is about twice that of the initial stage. Such a tendency
is related to the theoretically predictable zone, whose physically
meaningful boundaries can be explained based on the linear the-
ory of wave propagation. To be specific, in our case, the histor-
ical wave information is recorded by the upstream gauges (i.e.
WG2, WG5, WG6, WG7 and WG8). Then, the beginning and
the end of the theoretically predictable zone are moments when
recorded wave components at the upstream gauges fully reach
the downstream gauge (i.e. WG4) and those components ini-
tially leave the downstream gauge, respectively. In other words,

Fig. 8. The absolute errors of three types of input with different upstream
gauges data. (a) wave condition 1 during 7460s to 7600s and (b) wave condition
8 during 7580s to 7720s, where DBNet#1, DBNet#3 and DBNet#5 represent
the input from 1, 3 and 5 upstream gauges.

the boundaries are determined respectively by the timings that
the slowest wave passes the downstream gauge at the earliest
time and the fastest wave passes the downstream gauge at the
latest time. Thus, the increased errors in the last period beyond
the predictable zone are reasonable and expected. More analy-
ses about the theoretically predictable zone can refer to [17, 45].

For all nine wave conditions, the proposed DBNet holds the
lead in most of the prediction time horizons, demonstrating the
advantage of the DBNet compared with other ML-based meth-
ods. Another superiority of the DBNet is the better prediction
performance during the first 12.0s, which is especially obvious
for wave conditions 1-3 (Fig. 4 (a)-(c)) and wave conditions 7-9
(Fig. 4 (g)-(i)). In Fig. 5, we further illustrate the wave eleva-
tions measured in the experiments and the predicted results by
the proposed DBNet during the 7400s to 7800s for nine wave
conditions. As can be seen, the predicted results of the DBNet
show a high agreement with the experimental data under all
nine wave conditions. Taking wave condition 3 (Fig. 5 (c)) as
an example, the wave elevation experiences a dramatic surge at
around 7700s which increases from about -1.5m to almost 2.5m
directly. The proposed DBNet successfully tracks this striking
change with quite a high accuracy.

3.1.2. The significance of the directional information
The comparative studies are conducted in this section to in-

vestigate the significance of the directional information in pre-
dictions of 3D waves. Specifically, the directional information
is implicit within the data measured by the pentagonal gauge
array (WG2, WG5, WG6, WG7 and WG8). Thus, two addi-
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tional studies are conducted based on the proposed DBNet: the
input upstream wave information for the former is measured by
WG2, WG7 and WG8, while the latter is only WG2.

The quantitative comparison between three input scenarios
can be seen in Table 5. Apparently, the wave data measured by
three gauges contain less directional information than those of
five gauges. Thus, the errors of the DBNet with input measured
by three gauges increase marginally for all wave conditions.
As the directional information can be still extracted from three
upstream gauges, the average MAE% and RMSE% merely wit-
ness a slight increase from 9.1% to 9.6% and 11.6% to 12.3%,
respectively. In sharp contrast, when the input becomes the data
only from a single gauge, i.e. without any directional informa-
tion, the errors obviously surge to a high level, which increases
by more than 4.0% in MAE% and 5.0% in RMSE%.

The prediction results of those two scenarios can be seen in
Fig. 6 and Fig. 7. With three upstream wave gauges, the DBNet
demonstrates a satisfactory performance which holds a similar
accuracy compared with the prediction with five upstream wave
gauges. However, when only a single upstream gauge is avail-
able, the prediction errors dramatically rise to a very high level,
especially for those scenarios with tremendous changes. For
example, the wave emerges a violent fluctuation at about 7460s
in Fig. 7 (h). Although the fluctuation trend is correctly cap-
tured and predicted by the model, the prediction accuracy is
far from satisfactory which is more than 1.0m (30% normal-
ized by the significant height) measured by MAE. Two cases
of absolute errors with three types of input are visually illus-
trated in Fig. 8, where black dashed rectangles mark the typical
discrepancies between three circumstances. Clearly, the error
level of only one gauge’s input is significantly higher than the
other two scenarios. By comparison, the error distributions be-
tween the circumstances with three and five gauges’ inputs are
quite similar along the time span, indicating that the directional
information is indeed necessary for the model to extract and
reconstruct the features of 3D waves. From the above studies
and comparisons, we can conclude that directional information
plays an important role in the phase-resolved forecasting of 3D
waves.

3.1.3. The length of input and output time horizon

Intuitively, the difficulty of phase-resolved wave forecasting
will be positively associated with the length of the output but
negatively correlated with the length of the input. In this part,
the above hypothesis is explored by quantitative tests. Five out-
put time horizons, i.e. 22.5s, 24.0s, 25.5s, 27.0s and 28.5s and
five input time horizons, i.e. 130s, 110s, 90s, 70s and 50s are
compared using the proposed DBNet.

The prediction errors of these settings are reported in Fig.
9. As can be seen, the errors indeed increase with the ex-
tended length of the prediction time horizon, especially for
those longer than 25.5s. For the input sequence, the impact of
the length is not very obvious, especially for those longer than
90s.

Table 5: The prediction errors measured by MAE (m), RMSE (m), MAE% and
RMSE% using different upstream gauges under nine wave conditions. Each
method is trained, validated and tested ten times and then the means are re-
ported. Please notice the MAE and RMSE are transformed to the full scale.

Con. Gauges MAE RMSE MAE% RMSE%

1
1 0.24981 0.31430 13.323 16.763
3 0.17971 0.23083 9.585 12.311
5 0.16982 0.21704 9.057 11.576

2
1 0.34404 0.43165 13.492 16.927
3 0.24139 0.30837 9.466 12.093
5 0.22900 0.29079 8.980 11.404

3
1 0.50390 0.63715 12.597 15.929
3 0.37912 0.49164 9.478 12.291
5 0.35724 0.46019 8.931 11.505

4
1 0.20476 0.25627 14.626 18.305
3 0.14460 0.18351 10.329 13.108
5 0.13731 0.17408 9.808 12.435

5
1 0.18546 0.23155 13.997 17.476
3 0.13273 0.16899 10.017 12.754
5 0.12606 0.15976 9.514 12.057

6
1 0.43366 0.54544 12.849 16.161
3 0.30599 0.39555 9.066 11.720
5 0.29096 0.37358 8.621 11.069

7
1 0.59221 0.75581 12.402 15.828
3 0.46057 0.60673 9.645 12.706
5 0.43487 0.56505 9.107 11.833

8
1 0.46168 0.58463 13.990 17.716
3 0.31845 0.40610 9.650 12.306
5 0.30607 0.38793 9.275 11.755

9
1 0.31477 0.39539 13.686 17.191
3 0.21823 0.27934 9.488 12.145
5 0.20760 0.26401 9.026 11.479

Avg.
1 0.36559 0.46136 13.214 16.676
3 0.26453 0.34123 9.561 12.334
5 0.25099 0.32138 9.072 11.616

3.2. Wave forecasting using local information
In this part, wave forecasting using local information is in-

vestigated. To be specific, the input of models is set as the his-
torical local wave information measured by WG4 itself, while
the target output is the future wave elevation measured by WG4.

3.2.1. Performance of different methods
Apparently, as the input only contains local wave data with-

out either directional information or upstream historical wave
elevation, the predictable time horizon is expected to be much
shorter than the scenario with the upstream wave data. Thus,
a small prediction time horizon (4.5s) is selected in this condi-
tion, while the input historical time horizon is still 90s.

As shown in Table 6, even though all ML-based methods
have a decent performance, the errors of GRU and LSTM are
still more considerable than others due to the long input se-
quences. Since the output is a relatively short sequence, the
gaps between MLP, CNN and DBNet are very small, but the
proposed DBNet still holds a slim advantage.

The measured wave elevation and predicted results by the
proposed DBNet during the 7400s to 7800s are shown in Fig.
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Table 6: The prediction errors measured by MAE (m), RMSE (m), MAE% and RMSE% for all methods under nine wave conditions using local wave information.
Each method is trained, validated and tested ten times and then the means and standard deviations are reported. Note that the MAE and RMSE are transformed to
the full scale.

Con. Methods MAE RMSE MAE% RMSE%

1

GRU 0.16417 ± 0.00049 0.22038 ± 0.00061 8.755 ± 0.026 11.754 ± 0.033
LSTM 0.15601 ± 0.00134 0.21236 ± 0.00197 8.320 ± 0.071 11.326 ± 0.105
MLP 0.15957 ± 0.00072 0.21562 ± 0.00111 8.510 ± 0.039 11.500 ± 0.059
CNN 0.15755 ± 0.00282 0.21580 ± 0.00318 8.403 ± 0.150 11.510 ± 0.170
DBNet 0.15673 ± 0.00226 0.21484 ± 0.00263 8.359 ± 0.120 11.458 ± 0.140

2

GRU 0.21852 ± 0.00151 0.29513 ± 0.00203 8.569 ± 0.059 11.574 ± 0.080
LSTM 0.21212 ± 0.00226 0.28839 ± 0.00279 8.319 ± 0.089 11.309 ± 0.110
MLP 0.20889 ± 0.00111 0.28459 ± 0.00145 8.192 ± 0.043 11.160 ± 0.057
CNN 0.21098 ± 0.00380 0.28875 ± 0.00421 8.274 ± 0.149 11.324 ± 0.165
DBNet 0.20985 ± 0.00298 0.28753 ± 0.00345 8.230 ± 0.117 11.276 ± 0.135

3

GRU 0.36341 ± 0.00421 0.48700 ± 0.00547 9.085 ± 0.105 12.175 ± 0.137
LSTM 0.36377 ± 0.00573 0.48608 ± 0.00674 9.094 ± 0.143 12.152 ± 0.168
MLP 0.34212 ± 0.00181 0.46200 ± 0.00191 8.553 ± 0.045 11.550 ± 0.048
CNN 0.33802 ± 0.00563 0.45751 ± 0.00542 8.450 ± 0.141 11.438 ± 0.135
DBNet 0.33643 ± 0.00412 0.45566 ± 0.00429 8.411 ± 0.103 11.392 ± 0.107

4

GRU 0.12599 ± 0.00076 0.17020 ± 0.00115 8.999 ± 0.054 12.157 ± 0.082
LSTM 0.11840 ± 0.00191 0.16333 ± 0.00250 8.457 ± 0.136 11.666 ± 0.179
MLP 0.12761 ± 0.00092 0.17365 ± 0.00145 9.115 ± 0.066 12.404 ± 0.104
CNN 0.12533 ± 0.00246 0.17302 ± 0.00282 8.952 ± 0.176 12.359 ± 0.201
DBNet 0.12473 ± 0.00213 0.17237 ± 0.00251 8.909 ± 0.152 12.312 ± 0.179

5

GRU 0.12339 ± 0.00052 0.16616 ± 0.00092 9.313 ± 0.039 12.540 ± 0.070
LSTM 0.11541 ± 0.00210 0.15833 ± 0.00267 8.710 ± 0.158 11.950 ± 0.201
MLP 0.12472 ± 0.00092 0.16894 ± 0.00136 9.413 ± 0.069 12.750 ± 0.103
CNN 0.12085 ± 0.00248 0.16638 ± 0.00276 9.121 ± 0.187 12.557 ± 0.209
DBNet 0.12040 ± 0.00211 0.16587 ± 0.00245 9.087 ± 0.159 12.518 ± 0.185

6

GRU 0.29478 ± 0.00316 0.39612 ± 0.00384 8.734 ± 0.094 11.737 ± 0.114
LSTM 0.29204 ± 0.00338 0.39352 ± 0.00392 8.653 ± 0.100 11.660 ± 0.116
MLP 0.28053 ± 0.00145 0.38047 ± 0.00161 8.312 ± 0.043 11.273 ± 0.048
CNN 0.27810 ± 0.00495 0.37777 ± 0.00507 8.240 ± 0.147 11.193 ± 0.150
DBNet 0.27683 ± 0.00374 0.37640 ± 0.00403 8.202 ± 0.111 11.153 ± 0.119

7

GRU 0.45898 ± 0.00707 0.60425 ± 0.00891 9.612 ± 0.148 12.654 ± 0.187
LSTM 0.47510 ± 0.00952 0.62322 ± 0.01080 9.950 ± 0.199 13.052 ± 0.226
MLP 0.43218 ± 0.00255 0.57684 ± 0.00299 9.051 ± 0.053 12.081 ± 0.063
CNN 0.42723 ± 0.00658 0.57535 ± 0.00552 8.947 ± 0.138 12.049 ± 0.116
DBNet 0.42557 ± 0.00442 0.57300 ± 0.00404 8.913 ± 0.093 12.000 ± 0.085

8

GRU 0.29070 ± 0.00245 0.39550 ± 0.00357 8.809 ± 0.074 11.985 ± 0.108
LSTM 0.28752 ± 0.00329 0.39208 ± 0.00407 8.713 ± 0.100 11.881 ± 0.123
MLP 0.27744 ± 0.00151 0.38202 ± 0.00192 8.407 ± 0.046 11.576 ± 0.058
CNN 0.27993 ± 0.00517 0.38556 ± 0.00579 8.483 ± 0.157 11.684 ± 0.176
DBNet 0.27899 ± 0.00348 0.38477 ± 0.00419 8.454 ± 0.105 11.660 ± 0.127

9

GRU 0.19582 ± 0.00074 0.26490 ± 0.00114 8.514 ± 0.032 11.517 ± 0.050
LSTM 0.18822 ± 0.00166 0.25686 ± 0.00222 8.184 ± 0.072 11.168 ± 0.096
MLP 0.18857 ± 0.00097 0.25661 ± 0.00133 8.199 ± 0.042 11.157 ± 0.058
CNN 0.19031 ± 0.00327 0.26062 ± 0.00365 8.274 ± 0.142 11.331 ± 0.159
DBNet 0.18940 ± 0.00256 0.25950 ± 0.00302 8.235 ± 0.111 11.283 ± 0.131

Avg.

GRU 0.24842 ± 0.00232 0.33329 ± 0.00307 8.979 ± 0.084 12.047 ± 0.111
LSTM 0.24540 ± 0.00347 0.33046 ± 0.00419 8.870 ± 0.125 11.944 ± 0.151
MLP 0.23796 ± 0.00133 0.32231 ± 0.00168 8.601 ± 0.048 11.650 ± 0.061
CNN 0.23648 ± 0.00413 0.32231 ± 0.00427 8.547 ± 0.149 11.650 ± 0.154
DBNet 0.23544 ± 0.00309 0.32110 ± 0.00340 8.510 ± 0.112 11.606 ± 0.123
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Fig. 9. The prediction errors measured by MAE and RMSE using upstream
wave information for different lengths of the (a) output time horizon and the (b)
input time horizon.

10. As illustrated, the predictions most often match with the
measured wave elevation (which is used as the reference value).
For example, at about 7475s in Fig. 10 (a), the wave consider-
ably fluctuates from around -1.3m to 1.3m three times, while
the proposed DBNet nicely predicts such striking changes with
very small errors. Meanwhile, some differences exist between
peaks in the experiment results and DBNet predictions. The
first reason is that the local wave measured by the WG4 itself
does not contain any direction information. As shown in Sub-
section 3.1.2, the direction information is actually essential for
the phase-resolved prediction of 3D waves. The second fac-
tor which undermines prediction accuracy is the existence of
inevitable measurement errors.

3.2.2. The length of output time horizon

This part investigates wave forecasting using local informa-
tion for different lengths of future time horizons. Specifically,
taking the same length (90s) of historical local wave informa-
tion measured by WG4 as the input, the prediction errors for
different output time horizons including 4.5s, 5.1s and 6.0s are
explored.

As shown in Fig. 11, the errors obviously enlarge with the in-
crease of the prediction time horizons. For example, when pre-
dicting future 6.0s wave elevation, the RMSE increases more
than 20% compared with the 4.5s time horizon, indicating the
limited predictable future time horizon using local wave infor-
mation.

3.3. Ablation study about the hyper-parameters
In this part, the ablation study about the hyper-parameters of

different machine learning methods used in our work is con-
ducted. For the ablation study, the input is set as the 90s his-
torical wave information measured by the upstream gauges and
the output is the 25.5s future downstream wave elevation. All
methods are trained and tested ten times and the average MAE
and RMSE are reported in Fig. 12. To investigate the effect of
the number of convolutional layers, we add a CBR and delete
a CBR in the DBNet and the CNN, respectively. As seen in
Fig. 12, either adding a CBR (DBNet1 and CNN1) or deleting
a CBR (DBNet2 and CNN2) can lead to a marginal decrease
in accuracy. For MLP, the output sizes of the first two lay-
ers are set as (128, 64) to construct MLP1 and (512, 256) to
build MLP2. However, both of those two modifications would
weaken the performance. As to LSTM and GRU, the number
and size of the hidden layer for LSTM1 and GRU1 are set as 1
and 256, while LSTM2 and GRU2 are 2 and 128. The results
demonstrate that the increase in the size of the hidden layer
would slightly increase errors, while errors would obviously
rise with the increase in the number of hidden layers. Based
on this ablation study, the final hyper-parameters used in this
work are obtained which are reported in Section 2.3.

3.4. Discussion
It is worth mentioning that the phase-resolved forecasting of

3D waves based on local wave information only requires the lo-
cal wave measurement which is usually directly available, while
the prediction based on the upstream wave information, as in-
vestigated in Section 3.1, requires additional upstream wave
measurement. However, the local wave data can only meet the
very short-term wave prediction requirement within 5s which
is far from the standard of control-oriented wave forecasting
(at least 20-second future wave elevation [20]). By contrast,
although the measurement process is more complicated and ex-
pensive (at least three gauges installed on the upstream), the
upstream information can be used for control-oriented wave
forecasting. Thus, these two kinds of formulations have their
corresponding advantages and disadvantages. Therefore, they
will target different application scenarios according to the spe-
cific needs. Based on the experiments conducted in this paper,
the main findings are summarized as:

(1) The ML methods can achieve the real-time deterministic
forecasting of 3D waves (with a time horizon of more than
20s) based on the historical upstream wave information
measured by the gauge array. The forecasting time hori-
zon is sufficient to enable preview-based control of WECs.

(2) The study shows that the directional wave information cap-
tured by the upstream wave gauge array is necessary for
achieving accurate wave forecasting. Also, the errors of
phase-resolved wave forecasting are positively associated
with the length of the output and negatively correlated with
the length of the input.

(3) The results also demonstrate that with the local historical
information (which can be obtained more easily compared
with the directional upstream information) as the input, the
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Fig. 10. The wave elevations measured in experiments (red) and the prediction results by DBNet (blue) during the 7400s to 7800s, where the inputs are the local
historical wave information measured by WG4. (a)-(i) represent the nine wave conditions.

Fig. 11. The prediction errors measured by MAE and RMSE using local wave
information for different lengths of the output time horizon.

ML methods can achieve very short-term wave forecasting
(i.e. 4.5s) accurately.

4. Conclusions

To the best of our knowledge, this work investigated, for the
first time, the phase-resolved real-time prediction of 3D waves
based on ML and wave tank experiments. Two major barriers
in phase-resolved wave prediction, i.e. the generalization of the
model to diverse sea states and the deterministic prediction of
3D waves, were both resolved. Specifically, the experimental
results demonstrated that the set of ML models developed in
this paper was effective for different wave conditions and sea

states without retraining multiple times. In particular, the pro-
posed DBNet showed better performance than other ML meth-
ods.

The preview-based hydrodynamic control is a very impor-
tant and effective strategy to improve the power generation of
WECs [7] significantly. However, as a non-causal optimal con-
trol problem, forecasting for future wave elevations with at least
a 20-second time horizon is normally required for those WEC
controllers [20]. Thus, the machine learning model proposed
in this work, which can achieve the control-oriented phase-
resolved prediction of 3D waves for multiple sea states in real-
time, is greatly useful to enable the MPC approaches to enhance
the energy conversion efficiency of WECs. Our future works
may involve the investigation of more sea states, the valida-
tion of the model to full-scale wave data measured in real-world
ocean sites, and the application of the proposed model for WEC
controller optimization.
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