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Abstract—Semantic segmentation of remote sensing images 
plays a crucial role in a wide variety of practical applications, 
including land cover mapping, environmental protection, and 
economic assessment. In the last decade, convolutional neural 
network (CNN) is the mainstream deep learning based method of 
semantic segmentation. Compared with conventional methods, 
CNN-based methods learn semantic features automatically, 
thereby achieving strong representation capability. However, the 
local receptive field of the convolution operation limits CNN-based 
methods from capturing global information. In contrast, Vision 
Transformer demonstrates its great potential in global 
information modelling and obtains superior results in semantic 
segmentation. Inspired by this, in this Letter, we propose a class-
guided Swin Transformer (CG-Swin) for semantic segmentation 
of remote sensing images. Specifically, we adopt a Transformer-
based encoder-decoder structure, which introduces the Swin 
Transformer backbone as the encoder and designs a class-guided 
Transformer block to construct the decoder. The experimental 
results on ISPRS Vaihingen and Potsdam datasets demonstrate 
the significant breakthrough of the proposed method over ten 
benchmarks, outperform both advanced CNN-based and recent 
Vision Transformers based approaches. 

Index Terms—Fully Transformer network, class-guided 
mechanism, semantic segmentation, remote sensing. 

I. INTRODUCTION 
Semantic segmentation is one of the fundamental tasks in 

remote sensing imagery interpretation, which plays a vital role 
in widespread applications [4], such as land cover classification 
[7], urban planning [9], and ecological assessment [12]. Over 
the last decade, the convolutional neural network (CNN) has 
become the most popular framework for semantic segmentation 
due to its automatic and strong feature learning. The Fully 
Convolutional Network (FCN) [1] first proposes an end-to-end 
CNN structure for semantic segmentation. The outcome of FCN, 
although encouraging, appears to be coarse due to the over-
simplified decoding process. To address such issue, the U-Net 
[16] presents an encoder-decoder framework with two 
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symmetric paths, i.e. a contracting path for encoding semantic 
features and an expanding path for decoding and restoring the 
resolution. Benefiting from this encoder-decoder design, U-Net 
and its variants [18] obtain impressive segmentation 
performance. Subsequently, many CNN-based segmentation 
methods adopt the encoder-decoder structure and make great 
progress in the remote sensing community. 

However, the convolutional kernel with a fixed size leads to 
a local receptive field, which makes CNNs incapable to model 
the long-range dependency or global context inherently [19]. As 
for semantic segmentation, the local pixel classification can be 
more accurate if with the support of global contextual 
information [20]. To circumvent this issue, some studies 
modified the convolutional operation [2, 3] or applied attention 
mechanisms [21]. The former aims to enlarge the receptive 
fields by using large kernel sizes, dilated convolutions, or 
feature pyramids, whereas the latter introduces spatial or point-
wise attention modules into CNNs to better capture contextual 
information. Nevertheless, these methods fail to liberate the 
network from the dependence of a convolutional encoder, thus, 
biased toward local interactions.    

More recently, several inspiring advances attempt to avoid 
convolution operations completely by a novel architecture, i.e. 
Vision Transformer (ViT) [22]. ViTs formulate the semantic 
segmentation task as a sequence-to-sequence problem and 
extract semantic features with long-range dependencies 
effectively, which obtain impressive performances on remotely 
sensed image classification [23-29]. Especially, the Swin 
Transformer [30] presents a hierarchical structure, which 
further enhances its potential for semantic segmentation and 
achieves state-of-the-art results. 

Driven by this, in this Letter, we propose a class-guided Swin 
Transformer with a Transformer-based encoder-decoder 
architecture for remote sensing image segmentation. We 
introduce the Swin Transformer backbone as the encoder. Since 
category-based information is a vital factor for precise semantic 
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segmentation [31], we develop a class-guided Transformer 
decoder. Specifically, we first apply stacked convolution layers 
to extract the class-level semantic feature automatically from 
the input remote sensing image, then process it jointly with the 
extracted feature from the Swin Transformer encoder. The 
performance of the proposed method is tested on two popular 
remote sensing image segmentation datasets, i.e. ISPRS 
Vaihingen and Potsdam datasets, and compares with ten 
benchmark approaches comprehensively, including both 
advanced CNN-based and recent Vision Transformers based 
approaches. 

II. METHODOLOGY 
The proposed CG-Swin follows the fully Transformer-based 

encoder-decoder architecture, which obtains pixel-level class 
annotations from non-overlapping image patches. The 
overview of the CG-Swin is shown in Fig. 1. 

A. Encoder 
The small version of the Swin Transformer (Swin-S) [30] is 

selected as the encoder due to its excellent trade-off between 
efficiency and accuracy. As shown in Fig. 1, the encoder takes 
an image 𝑋𝑋 ∈ ℝ3×𝐻𝐻×𝑊𝑊  as the input and generates four 
semantic features at different channel dimensions and 
resolutions. Thus, we utilize standard 33 convolution layers 
and up-sampled operations to unify the shape of the four feature 
maps. Finally, we merge the four feature maps and generate an 
encoding feature 𝑋𝑋𝑒𝑒 ∈ ℝ𝑑𝑑×𝐻𝐻4×𝑊𝑊4 , where d is the channel 
dimension and set as 96. This encoding feature is fed into the 
decoder for further processing. 

B. Decoder 
The class-guided Transformer decoder is composed of three 

stages. In the first stage, it applies the class-level information 
extraction module to capture the category-based semantic 
feature. The class-level information extraction module employs 
three 33 convolution layers to capture the class-level context 
automatically. Each convolution layer is equipped with a Batch 
Normalization operation and a ReLU activation function. The 
extracted class-level feature can be denoted by 𝑋𝑋𝑐𝑐 ∈ ℝ𝑘𝑘×𝐻𝐻4×𝑊𝑊4 , 
where k is the number of categories. 

In the second stage, we first flatten the concatenated feature 
to a 1D vector 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶 ∈ ℝ

𝐻𝐻𝑊𝑊
16 ×(𝑑𝑑+𝑘𝑘) and linearly project it to a 

sequence of tokens. Then, the learnable relative position 

embedding 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃 ∈ ℝ
𝐻𝐻𝑊𝑊
16 ×(𝑑𝑑+𝑘𝑘) is embedded with the 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶  for 

improving positional information. A consecutive Swin 
Transformer block with two layers is selected to optimize the 
𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶 . The consecutive Swin Transformer block can be defined 
as: 

𝑋𝑋
1

= 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝐿𝐿𝐿𝐿(𝑋𝑋0)) + 𝑋𝑋0 (1) 

𝑋𝑋1 = 𝑊𝑊𝐿𝐿𝑀𝑀(𝐿𝐿𝐿𝐿(𝑋𝑋
1

)) + 𝑋𝑋
1
 (2) 

𝑋𝑋
2

= 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝐿𝐿𝐿𝐿(𝑋𝑋1)) + 𝑋𝑋1 (3) 

𝑋𝑋2 = 𝑊𝑊𝐿𝐿𝑀𝑀(𝐿𝐿𝐿𝐿(𝑋𝑋
2

)) + 𝑋𝑋
2
 (4) 

where 𝑋𝑋0  denotes the input vector 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑋𝑋
1

 and 𝑋𝑋
2
 

represents the output vector of the window-based multi-head 
self-attention module (WMSA) and the shifted window-based 
multi-head self-attention(SWMHSA) [30]. 𝑋𝑋1  and 𝑋𝑋2 
denotes the middle vector and the output vector, respectively. 
LN is the Layer Norm operation, and MLP denotes the 
multilayer perceptron. 

Finally, we separate the optimized 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶  into the 𝑋𝑋𝑒𝑒  and 
𝑋𝑋𝑐𝑐 and apply the class-guided operation to enhance the context 
interaction between them. The class-guided operation consists 
of two parallel paths, i.e. a compression path and an attention 
path. The compression path employs the Linear Projection and 
Layer Norm operation to reduce the channel dimension of the 
𝑋𝑋𝑒𝑒 to the number of categories. The attention path applies an 
average pooling layer and a Sigmoid activation function to 
generate a class-guided attention matrix. The total function of 
the class-guided operation can be defined as: 

𝑊𝑊(𝑋𝑋𝑒𝑒 ,𝑋𝑋𝑐𝑐) = 𝐿𝐿𝐿𝐿(𝐿𝐿𝑀𝑀𝑘𝑘𝑑𝑑(𝑋𝑋𝑒𝑒))⨀𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊𝐴𝐴𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝐴𝐴(𝑋𝑋𝑐𝑐)) (5) 

Where LN and LP denote the Layer Norm and Linear Projection, 
respectively. ⨀  represents the dot product operation. 
Processed by the class-guided operation, the compressed 
semantic feature 𝑋𝑋𝑒𝑒 gains rich class-level information, which 
means that each channel dimension of 𝑋𝑋𝑒𝑒  accurately 
characterized a category of ground objects. For precise per-
pixel classification, it is crucial to obtain such a category-based 
semantic feature in the decoding period. 

In the third stage, we utilize a multilayer perceptron to refine 
the category-based semantic feature and restore its resolution to 
the original, thereby producing the segmentation mask. 

 
Fig. 1. The structure of the CG-Swin. 
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III. EXPERIMENTAL RESULTS 

A. Dataset 
We select the ISPRS Vaihingen and Potsdam semantic 

labelling datasets to test the effectiveness of the proposed 
method. There are 33 tiles with an average size of 24942064 
pixels in the Vaihingen dataset and 38 tiles with a size of 
60006000 pixels in the Potsdam dataset. Following previous 
pieces of literature [6], in the Vaihingen dataset, we use the 
officially provided 16 images for training and 17 for testing, 
while the setting in the Potsdam dataset is 24  tiles for training 
and 14 tiles for testing. The image tiles are cropped into 
10241024 px patches as the input. As for data augmentation, 
we use the random scale with a range from 0.5 to 1.5, random 
flip and random crop. Besides, the multi-scale strategy is 
applied in the testing period. 

B. Experimental Setting 
All of the experiments are implemented with PyTorch on a 

single RTX 3090, and the optimizer is set as AdamW with a 
learning rate of 6e-4. For each method, the overall accuracy 
(OA), mean Intersection over Union (mIoU), and F1-score (F1) 
are selected as evaluation metrics: 

𝑂𝑂𝑊𝑊 = ∑ 𝑇𝑇𝑃𝑃𝑘𝑘
𝑁𝑁
𝑘𝑘=1

∑ 𝑇𝑇𝑃𝑃𝑘𝑘+𝐹𝐹𝑃𝑃𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘𝑁𝑁
𝑘𝑘=1

, (6) 

𝑆𝑆𝑚𝑚𝑆𝑆𝑚𝑚 = 1
𝑇𝑇
∑ 𝑇𝑇𝑃𝑃𝑘𝑘

𝑇𝑇𝑃𝑃𝑘𝑘+𝐹𝐹𝑃𝑃𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
𝑇𝑇
𝑘𝑘=1 ,  (7) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑝𝑝 = 1
𝑇𝑇
∑ 𝑇𝑇𝑃𝑃𝑘𝑘

𝑇𝑇𝑃𝑃𝑘𝑘+𝐹𝐹𝑃𝑃𝑘𝑘
𝑇𝑇
𝑘𝑘=1 , (8) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝐴𝐴𝐴𝐴 = 1
𝑇𝑇
∑ 𝑇𝑇𝑃𝑃𝑘𝑘

𝑇𝑇𝑃𝑃𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
𝑇𝑇
𝑘𝑘=1 , (9) 

𝐹𝐹1 = 2 × 𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃𝑝𝑝×𝑝𝑝𝑒𝑒𝑐𝑐𝐶𝐶𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃𝑝𝑝+𝑝𝑝𝑒𝑒𝑐𝑐𝐶𝐶𝑟𝑟𝑟𝑟

, (10) 

where 𝑇𝑇𝑀𝑀𝑘𝑘 , 𝐹𝐹𝑀𝑀𝑘𝑘 , 𝑇𝑇𝐿𝐿𝑘𝑘 , and 𝐹𝐹𝐿𝐿𝑘𝑘  indicate the true positive, 
false positive, true negative, and false negatives, respectively, 
for the specific object indexed as class k. OA is computed for 
all categories including the background.  

C. Semantic Segmentation Results and Analysis 
1) Quantitative Comparison: The experimental results on 

the Vaihingen and Potsdam datasets are listed in Table Ⅰ and 
Table Ⅱ. The quantitive metrics illustrate the effectiveness of 
the proposed method. Specifically, the CG-ViT achieves 90.81% 
in mean F1 score, 91.68% in OA, and 83.39% in mIoU for the 
Vaihingen dataset, with 93.28%, 91.93%, and 87.61% for the 
Potsdam dataset, outperforming the advanced CNN-based 
methods like DDCM-Net [6] and UFMG_4 [15]. Benefitting 
from the category-level semantic information modelled by the 
class-guided Transformer block, the performance of our 
method also outperforms recent Vision Transformers designed 
initially for remote sensing images, such as BANet [14] and 
CMFNet [17]. The visual comparisons with the FCN further 
illustrate the advantages of the proposed method (Fig. 2). 

2) Ablation Study: To investigate the contribution of the 
class-guided mechanism to accuracy, we conduct the ablation 
study on the Vaihingen and Potsdam datasets. As shown in 
Table III, the utilization of the class guidance provides 
significant improvements, i.e. 2.21% and 1.65% mIoU for the 
Vaihingen and Potsdam test sets, respectively. 

TABLE Ⅱ 
THE EXPERIMENTAL RESULTS ON THE POTSDAM DATASET. 

Method Backbone Imp.surf. Building Low veg. Tree Car MeanF1 OA mIoU 
FCN [1] ResNet50 90.84 95.59 84.10 84.75 84.95 88.05 88.02 79.53 
DeepLabV3+ [3] ResNet101 92.95 95.88 87.62 88.15 96.02 92.12 90.88 84.32 
PSPNet [2] ResNet101 93.36 96.97 87.75 88.50 95.42 92.40 91.08 84.88 
DDCM-Net [6] ResNet50 92.90 96.90 87.70 89.40 94.90 92.30 90.80 - 
AMA_1 - 93.40 96.80 87.70 88.80 96.00 92.54 91.20 - 
SWJ_2 ResNet101 94.40 97.40 87.80 87.60 94.70 92.38 91.70 - 
V-FuseNet [8] FuseNet 92.70 96.30 87.30 88.50 95.40 92.04 90.60 - 
DST_5 [10] FCN 92.50 96.40 86.70 88.00 94.70 91.66 90.30 - 
MANet [13] ResNet50 93.40 96.96 88.32 89.36 96.48 92.90 91.32 86.95 
BANet [14] ResT-Lite 93.13 96.37 87.31 88.01 95.79 92.12 90.76 85.62 
CMFNet [17] - 92.84 97.63 88.00 87.40 95.68 92.10 91.16 85.63 
CG-Swin(ours) Swin-S 94.07 97.42 88.53 89.74 96.61 93.28 91.93 87.61 

 

TABLE Ⅰ 
THE EXPERIMENTAL RESULTS ON THE VAIHINGEN DATASET. 

Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA mIoU 
FCN [1] ResNet50 89.73 93.17 80.57 88.89 71.55 84.78 87.99 73.45 
PSPNet [2] ResNet101 92.79 95.46 84.51 89.94 88.61 90.26 90.85 82.58 
DeepLabV3+ [3] ResNet101 92.38 95.17 84.29 89.52 86.47 89.57 90.56 81.47  
DANet [5] ResNet101 91.63 95.02 83.25 88.87 87.16 89.19 90.44 81.32  
DDCM-Net [6] ResNet50 92.70 95.30 83.30 89.40 88.30 89.80 90.40 - 
CASIA2 [11] ResNet101 93.20 96.00 84.70 89.90 86.70 90.10 91.10 - 
V-FuseNet [8] FuseNet 91.00 94.40 84.50 89.90 86.30 89.20 90.00 - 
UFMG_4 [15] - 91.10 94.50 82.90 88.00 81.30 87.70 89.40 - 
MANet [13] ResNet50 93.02 95.47 84.64 89.98 88.95 90.41 90.96 82.71 
BANet [14] ResT-Lite 92.23 95.23 83.75 89.92 86.76 89.58 90.48 81.35 
CMFNet [17] - 92.36 97.17 80.37 90.32 85.47 89.24 90.43 80.82 
CG-Swin(ours) Swin-S 93.55 96.24 85.70 90.59 87.98 90.81 91.68 83.39 
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 4 

IV. CONCLUSION 
In this Letter, we construct a fully Transformer network, 

namely the class-guided Swin Transform er (CG-Swin), for 
semantic segmentation of remote sensing images. We design a 
class-guided mechanism and combined it with the Swin 
Transformer block to construct a class-guided Transformer 
decoder. Numerical experiments conducted on the ISPRS 
Vaihingen and Potsdam datasets with benchmark comparison 
demonstrate the benefits of the class-guided mechanism and the 
effectiveness of the proposed method in segmentation accuracy. 
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