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Abstract

Wake interactions between wind turbines have a great impact on the overall performance of a wind farm. In this work, a novel
deep learning method, called Bilateral Convolutional Neural Network (BiCNN), is proposed and then employed to accurately
model dynamic wind farm wakes based on flow field data generated by high-fidelity simulations. Different from the existing
machine-learning-based dynamic wake models where dimensionality reduction is essential, the proposed BiCNN is designed to
directly process the different types of inputs through a background path and a foreground path, thus avoiding the errors due to
dimensionality reduction. Substantial results show that the developed machine learning based wake model can achieve accurate
wake predictions in real time, i.e. it captures the spatial variations of the dynamic wakes similarly as high-fidelity wake models
and runs as fast as low-fidelity static wake models. The overall prediction error of the developed model is 3.7% with respect to the
freestream wind speed. Furthermore, the results for a test farm consisting of 25 turbines show that the developed model can predict
the dynamic wind farm wakes within several seconds using a standard laptop, while the same scenario using high-fidelity numerical
models would consume tens of thousands of CPU hours.
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1. Introduction

Wind energy has demonstrated tremendous potential and ex-
perienced a great surge in recent years [1], due to its sustainable
superiority against traditional fossil fuels. However, normally
constructed in large-scale arrays to reduce the overall cost, the
wind turbine severely suffers from the wake interactions, which
decreases its productivity, especially when a turbine operates
in the lee of another [2]. To alleviate the wake effects and en-
hance the wind farm performance, two distinct fields have been
widely studied. The former is the turbine layout optimization,
where the installation locations of wind turbines are optimized
to maximize annual revenue [3]. The latter is wind farm con-
trol, which manipulates the internal wind field to optimize a
farm level objective such as power generation maximization or
structural degradation minimization [4]. Although steady state
wake models can meet the requirement for layout optimization,
an accurate and efficient dynamic wake model (including tur-
bulence, transport delay, time-varying mean wind speed and di-
rection, and potentially floating platform motion) are essential
for the design and evaluation of the wind farm control strategy
[4].

Tremendous efforts have been made on wind farm wake
modeling. The existing wake models can be categorized ac-
cording to their fidelity into three types, i.e. low-fidelity,
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medium-fidelity, and high-fidelity models. The low-fidelity
models, e.g. the Jensen Park model [5, 6], the FLORIS
model [7], the 3D wake model [8], the 3DEG model [9], and
the FOWFSim [10], are formulated analytically and are the
frequently-used methods for wind farm layout optimization due
to their fast speed. To further enhance the performance, a series
of improvements have been made in recent years. For example,
the expansion of the physical wake boundary was considered
in [11], while the optimal cooperative control was integrated
by [12]. Meanwhile, more fine-grained factors were included,
such as yaw effects [13, 14, 15], background flow field [16],
and terrain conditions [17, 18]. Besides, the uncertainty based
on high-fidelity data was also incorporated [19]. Nevertheless,
because they are static, these low-fidelity models can only be
used for optimizing static quantities such as mean power gen-
eration and are inadequate when considering unsteady quanti-
ties such as power fluctuation and structural load in the sce-
narios of control design [20]. Hence, it is an urgent require-
ment to build a dynamic model that can capture the unsteady
wakes. Currently, most investigations on unsteady wakes are
conducted based on numerical simulations such as Reynolds-
averaged Navier-Stokes (RANS) and Large Eddy Simulation
(LES), where turbine rotors are modeled by the actuator line
method (ALM) [7, 21, 22] or the actuator disk method (ADM)
[23, 24, 25]. Even though the accurate features of flows can
be achieved, they require tremendous computational resources.
For instance, to generate a 1000-second LES of a 3 km × 3 km
wind farm with 6 turbines, it would take about 60 hours of dis-
tributed computation with 512 processors on High-Performance
Computing (HPC) clusters [7]. To alleviate the computational
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Nomenclature

Abbreviations

ADM Actuator Disk Method

ALM Actuator Line Method

ANN Artificial Neural Network

BiCNN Bilateral Convolutional Neural Network

BP Background Path

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

DL Deep Learning

FP Foreground Path

GPR Gaussian Process Regression

GAN Generative Adversarial Network

GNN Graph Neural Network

HPC High-Performance Computing

i2i image-to-image

LES Large Eddy Simulation

LSTM Long-Short Term Memory

ML Machine Learning

MAE Mean Absolute Error

MSE Mean Squared Error

NREL National Renewable Energy Laboratory

NS Navier–Stokes

POD Proper Orthogonal Decomposition

RANS Reynolds-Averaged Navier-Stokes

RDT Regression Decision Tree

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SCRTP Scientific Computing Research Technology Plat-
form

seq2seq sequence-to-sequence

SOWFA Simulator fOr Wind Farm Applications

VAWT Vertical-Axis Wind Turbine

S ymbols

di The distributed control parameter at the ith time step

dM The distributed control parameter of the Mth turbine

D The matrix of designed input variables

M The number of wind turbines

n The number of prediction steps

Nt The number of time steps in LES simulations

Nx The number of points for each subdomain in the x
dimension

Ny The number of points for each subdomain in the y
dimension

P The dimension of each distributed parameter

S The number of simulations in the LES database

u0
i The inflow velocity at the ith time step

ũx,y
i The true value of a flow snapshot on the position

(x, y) at the ith time step

ûx,y
i The approximate value of a flow snapshot on the po-

sition (x, y) at the ith time step

U The matrix of all the flow fields

Û The flow field predicted by BiCNN

x The input the the ML-based wake model

α The weight of the auxiliary loss function

ϵ The prediction error

θ The parameters of the BiCNN

burden, the control-oriented wake modeling is attracting atten-
tion lately, such as the WFSim [26], the FAST.Farm [27], the
curled wake model [28], and the FLORIDyn model [29].

To summarize, for wind farm wake prediction, the low-
fidelity models are computationally efficient but lack of flow
details, while high-fidelity models are computationally too ex-
pensive to be used in engineering applications. To bridge this
gap, Machine Learning (ML) method especially Deep Learning
(DL) has great potential to achieve both accuracy and efficiency
for wake predictions.

For example, ML algorithms such as Long Short Term Mem-
ory (LSTM) network [30], Artificial Neural Network (ANN)
[31, 32], Convolutional Neural Network (CNN) [33], Graph

Neural Network (GNN) [34], and Regression Decision Tree
(RDT) [35] were employed to predict power generation by tak-
ing wake losses into consideration. In [36], the random for-
est method was combined with analytical wake models to im-
prove the performance of wake calculations. The genetic pro-
gramming was adapted in [37] to derive empirical relationships,
thereby estimating wake velocity and turbulence intensity for
both uniform and atmospheric boundary layer inflows. The
stochastic analysis of an offshore wind farm was conducted in
[38] where five ML approaches were evaluated. Furthermore,
in [39], three ML algorithms were validated to estimate the ve-
locity and turbulence intensity of a wind turbine’s wake. Simi-
larly, by employing the ML method and RANS/ADM coupling
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approach, a novel framework for turbine wake predictions was
proposed in [40]. Based on the ANN yawed wake model, a
double-layer machine learning framework was proposed in [41]
for cooperative yaw control. Based on the Gaussian Process
Regression (GPR) model, the cumulative wake for a wind farm
was analyzed by [42]. The ML approach, i.e. the random for-
est, was also introduced in order to reconstruct the wake flow
of the Vertical-Axis Wind Turbine (VAWT) [43]. Besides, more
advanced DL methods such as Generative Adversarial Network
(GAN) were also introduced [44].

However, the works on developing machine learning models
that can predict dynamic wind farm wake flows are still very
limited. An ML method named POD-LSTM was proposed to
predict the dynamic wake interactions of wind turbines within
a wind farm in [45]. In the pipeline of their paper, the original
flow field data were reduced to low-dimensional coefficients us-
ing the Proper Orthogonal Decomposition (POD) method and
then reshaped into the 1D sequence shape. Then, the reduced
coefficients, the inflow velocity, and the distributed control pa-
rameters at previous time steps were concatenated as the input
sequence of POD-LSTM, while the reduced coefficients at the
future time step were set as the output sequence, thereby model-
ing the issue as a sequence-to-sequence (seq2seq) task. There-
after, a deep Recurrent Neural Network (RNN) for seq2seq
tasks, i.e. LSTM, was trained and tested for the reduced coeffi-
cients. In [46], based on data generated by the medium-fidelity
model WFSim, an autoencoder structure was included to map
the high-dimensional nonlinear system to a low-dimensional
linear system. Although the dimensionality reduction in their
pipelines solves the issue of the curse of dimensionality, the
spatial correlations were consequently eliminated as the flow
field was reshaped into the 1D format after reducing the dimen-
sion, which would reduce the accuracy inevitably and limit the
ability of the model for long-term predictions. For example, the
dimensional reduction procedure alone could lead to an error of
0.253 m/s compared with the raw high-fidelity flow field data
[45].

Therefore, this paper aims at developing a ML based dy-
namic wind farm wake model based on full flowfield data with-
out dimensionality reduction to achieve accurate and long-term
dynamic wake prediction in real time. Generally, the basic sta-
tus of the flow field are contiguous and stable along the adjacent
time steps, while the change of inflow velocity and distributed
control parameters are the main external factors that cause the
variations. Based on the above intuitions, we divide the input
of our pipeline into two categories, i.e. the background and the
foreground. The former refers to the historic flow fields which
are in 2D formats, while the latter includes the inflow veloc-
ity as well as the distributed control parameters which are in
1D formats. Accordingly, we design a Background Path (BP)
using the flow field as the input and a Foreground Path (FP)
taking the inflow velocity and control parameters as the input,
forming the proposed Bilateral Convolutional Neural Network
(BiCNN). For the background path, the shapes of the input and
output flow fields are both kept in 2D formats, thereby model-
ing the target as an image to image (i2i) task and fully main-
taining the abundant spatial information. For the foreground

path, the 1D inflow velocity and distributed control parame-
ters are first concatenated and reshaped into 2D formats after a
densely connected layer. Then, as the feature maps are all in 2D
formats, we design three stacked 2D CNN layers in the back-
ground path and the foreground path respectively. Particularly,
an auxiliary loss is elaborately designed which constrains the
foreground path to learn the variation tendency. Subsequently,
the outputs of the background path and the foreground path are
added directly and then processed by a densely connected layer
to generate the predicted flow field at the further time step. This
novel deep learning method without dimensionality reduction is
then used to develop a dynamic wind farm wake model based on
high-fidelity LES data. After training, the developed model’s
performance is evaluated by an extensive set of experiments.
The comparison with high-fidelity data demonstrates that it can
achieve accurate wake predictions in real time. Particularly, the
Mean Absolute Error (MAE) between the predicted results and
high-fidelity data is 0.330 m/s, which is 3.7% of the freestream
wind speed. More importantly, the proposed BiCNN can still
maintain a good accuracy even after 100 iterative predictions.

The novelty and contributions of this paper are as follows:

(1) A novel machine learning based dynamic wind farm wake
model is developed based on high-fidelity simulation data
without dimensionality reduction. Different from the exist-
ing ML-based dynamic wake models which are all based on
dimensionality reduction, this paper develops a deep learn-
ing method which directly formulates the issue as a super-
vised ML task, thus avoiding the dimensionality reduction
errors and retaining the detailed flow field features. The
comparison between the proposed model and existing wake
models is summarised in Table 1.

(2) The proposed BiCNN method introduces the convolutional
neural network into the dynamic wind farm wake model
for the first time. Compared with the existing methods,
the BiCNN not only demonstrates the huge potential of
the CNN in wake modeling but also shifts the traditional
paradigm where dimensionality reduction is essential. Par-
ticularly, the CNN-based background path and foreground
path are elaborately designed in the BiCNN to directly pro-
cess the different types of inputs, which also provides a new
framework for the ML-based surrogate modeling of general
fluid systems.

(3) The performance of the developed model is evaluated
through comprehensive simulation tests, which include the
predictions of single turbine wakes, multiple turbine wakes,
yawed wakes, as well as wake interactions within a large
wind farm. The results demonstrate that the proposed
model can predict the unsteady wind farm wakes very ac-
curately in real time. Specifically, the prediction error on
the test set is only 0.330 m/s, which is just 3.7% of the
freestream wind magnitude.

The remaining part of this paper is organized as follows: the
proposed ML-based method and the high-fidelity data are de-
scribed in Section 2. Thereafter, the model evaluation, valida-
tion, and prediction are given in Section 3. The conclusions are
finally drawn in Section 4.
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Table 1: The comparison of the machine learning based wake model developed in this paper (i.e. BiCNN) with existing wake models.
Type Analytical Numerical Machine learning

Models

Jensen [5, 6]
FLORIS [7]
3D wake [8]
3DEG [9]
FOWFSim[10]

SOWFA [47]
PALM [48]
UTDWF [49]
Nalu-Wind [50]

POD-LSTM [45] BiCNN

Based on flow observations NS equations LES database LES database
Method flow analysis CFD deep learning deep learning
Speed fast slow fast fast
Accuracy low high moderate/high moderate/high
Flow details no yes yes yes
Dimensionality Reduction - - yes no

Fig. 1. The overall structure of the proposed BiCNN.

2. Methodology

There are two types of inputs for predicting the flow field at
the future time step T + 1: the historic flow field conditions
at time steps 1 ∼ T and the influence factors including the in-
flow velocity as well as distributed control parameters at time
steps 1 ∼ T . Generally, the flow field at time step T + 1 is
strongly related with those at adjacent time steps. Hence, the
neighboring historic flow fields can be seen as the basic status,
i.e. the background, of the flow field at time step T + 1. By
contrast, the influence factors determine the variation tendency
of the wake, which can be seen as the foreground at time step
T + 1. Based on the above intuitions, we develop our BiCNN
with two branches where the background path takes the his-
toric flow fields as the input to obtain the background infor-
mation and the foreground path takes influence factors as the
input to generate the foreground features. The overall struc-
ture of the proposed BiCNN is illustrated in Fig. 1. In the
rest part of this section, the proposed machine learning based
wake modeling method (including the problem formalization,
the bilateral structure, the loss function, the high-fidelity data,
the model training, and the multi-step predictions for the whole
wind farm) will be described in detail.

2.1. Problem formalization

An example wind farm is illustrated in Fig. 2. Herein, M
wind turbines with corresponding distributed control parame-
ters (yaw angle in our simulations), i.e. [d1, d2, ..., dM], are
shown in the rectangular flow domain. For a wind farm that
contains M turbines, the set of input variables is indicated as
D in the shape of [M,Nt, P]. Nt represents the total number of
time steps and P represents the dimension of each distributed
control parameter. Correspondingly, the shape of the output U
is [M,Nt,Nx×Ny], where Nx and Ny are the total number of grid
points for each subdomain in the x and y directions respectively.

In addition, when S simulations are carried out, the final
shape of the input matrix and the output matrix would be [M ×
S ,Nt, P] and [M×S ,Nt,Nx×Ny] respectively. The high-fidelity
output variables U is calculated by the CFD method while the
prediction by the proposed BiCNN is denoted as Û . Here, the
input variables of the BiCNN include the history of the flow
fields [ũ1, ũ2, ..., ũT ], the inflow velocity [u0

1, u0
2, ..., u0

T ], and
the distributed control parameters [d1, d2, ..., dT ]. Hence, given
an ML-based turbine wake model f (x; θ), the target is to narrow
the gap between the predicted flow field Û and the high-fidelity
U as close as possible by optimizing the parameters, i.e. θ, of
the model:
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Fig. 2. A typical example of a distributed fluid system. Figure adapted from Ref. [45].

θ∗ = arg min
θ

E(θ),

E(θ) =
1

(Nt − T ) × S

Nt∑
i=T+1

S∑
j=1

L(ũi, j, f (xi, j; θ)), (1)

xi, j = ([ũi−T, j, ũi−T+1, j, ..., ũi−1, j], [u0
i−T, j, u0

i−T+1, j, ..., u0
i−1, j],

[di−T, j, di−T+1, j, ..., di−1, j]),

where E(θ) means the expected average error of the predicted
flow field, while the loss function L(·) measures the disparity
between the high-fidelity flow fields and the predicted results.

2.2. Bilateral structure
As formulated in Eq. (1), the whole issue can be modeled

as a supervised machine learning problem, aiming at predict-
ing the flow field at the current time step based on flow history.
Here, we utilize the convolutional neural network to address
this issue where two branches are designed to process the back-
ground information and foreground features respectively. The
detailed illustration of the proposed BiCNN is shown in Fig.
3, where the flow fields from time step 1 to T are fed into the
background path while the inflow velocity and the distributed
control parameters from time step 1 to T are fed into the fore-
ground path.

Specifically, as in 2D format, the flow fields at time steps
from 1 to T can be seen as an image with T channels which can
be directly manipulated by the 2D convolution layer. Mean-
while, the function of the background path is to provide the
basic status of the future flow field based on the previous flow
fields, which means the input and the output are highly related
and homogeneous. Hence, we design a relatively simple struc-
ture for the background path which stacks three convolution
layers with (3 × 3), (1 × 1) and (3 × 3) kernel sizes and 1 chan-
nel respectively. For the foreground path, the inflow velocity
and distributed parameters in 1D formats are concatenated first.
Then, a densely connected layer is attached to extend the shape
of the concatenated feature maps, which is thereafter reshaped
to the 2D format in the identical shape of the flow field. In
this way, the extracted feature maps can then be processed by
convolution operations. Finally, three 2D convolution layers

are stacked to capture the foreground features. Particularly, as
the relationship between the input and the output of the fore-
ground path is highly nonlinear, the activation function Recti-
fied Linear Unit (ReLU) is adopted to enhance the representa-
tional ability for nonlinear features. With this network design,
the background information is captured by the background path
while the foreground features are generated by the foreground
path. Thereafter, the outputs of the background path and the
foreground path are added directly and then fed into a densely
connected layer to generate the predicted flow field at time step
T + 1. The detailed setting of each layer is given in Table 2.

2.3. Loss function

As illustrated above, the background information and fore-
ground features are extracted by the background path and fore-
ground path respectively. The pivotal point which drives differ-
ent branches to optimize for specific targets is the loss function,
which is described in this subsection.

As shown in Fig. 3, there are two loss functions in the pro-
posed BiCNN, i.e. one for the final output (Loss1) and the other
for the foreground path (Loss2), which are both set as Mean
Squared Error (MSE) function. Loss1 is expressed as:

Loss1(ũT+1, ûT+1) =
1

Nx × Ny

Nx∑
x=1

Ny∑
y=1

(ũx,y
T+1 − ûx,y

T+1)2 (2)

where ũi, j
T+1 and ûi, j

T+1indicate the value of flow field at the posi-
tion (i, j) and time step T + 1 obtained by LES simulation and
the BiCNN respectively. By minimizing Loss1, the whole net-
work is trained to learn the relationship between the input and
the output, thereby delivering accurate predictions. In contrast,
the reference for Loss2 is the disparity between flow fields at
time steps T and T + 1, which is expressed as:

Loss2(ũT+1, ûT+1) =

1
Nx × Ny

Nx∑
x=1

Ny∑
y=1

[(ũx,y
T+1 − ũx,y

T ) − (ûFP)x,y
T+1]2.

(3)
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Fig. 3. The detailed illustration of the proposed BiCNN.

To be specific, the minimization of Loss2 impels the foreground
path to capture the variation between flow fields at time steps T
and T + 1, i.e. the foreground features.

In summary, the final output is optimized by Loss1 to ap-
proximate the LES data as good as possible, while the output of
foreground path is constrained by Loss2 to learn the variation
tendency of the wake. As the final output is the summation of
the background path and the foreground path, the background
path will be driven to deliver the background information natu-
rally. The whole loss can then be expressed as:

Loss(ũT+1, ûT+1) =Loss1(ũT+1, ûT+1) + αLoss2(ũT+1, ûT+1)

=
1

Nx × Ny

Nx∑
x=1

Ny∑
y=1

{(ũx,y
T+1 − ûx,y

T+1)2

+ α[(ũx,y
T+1 − ũx,y

T ) − (ûFP)x,y
T+1]2},

(4)

where ûFP represents the output the the foreground path and α
controls the weight of Loss2. As the optimization of Loss1 is
the main target of the model while Loss2 plays the subsidiary
role, the value of weight α is set as 0.75.

2.4. High-fidelity data
To generate the dataset for training and testing, an LES

solver developed by the National Renewable Energy Labora-
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Table 2: The detailed setting of each layer in BiCNN.
Name Input size Output size Kernel Channel Stride Padding
Conv1 30 × 50 × 5 30 × 50 × 1 3 × 3 1 1 1
Conv2 30 × 50 × 1 30 × 50 × 1 1 × 1 1 1 0
Conv3 30 × 50 × 1 30 × 50 × 1 3 × 3 1 1 1
Conv4 30 × 50 × 5 30 × 50 × 1 3 × 3 1 1 1
Conv5 30 × 50 × 1 30 × 50 × 1 1 × 1 1 1 0
Conv6 30 × 50 × 1 30 × 50 × 1 3 × 3 1 1 1
Dense1 31 × 5 1500 × 5 - - - -
Dense2 1500 × 1 1500 × 1 - - - -

tory (NREL) for wind farm simulations, i.e. SOWFA [47], is
utilized where the turbine rotors are modeled as actuator lines.
Three turbines [51] located in a row are simulated to investigate
the flow field both for freestream and upstream wake condi-
tions, where the 2D mean velocity fields around each turbine at
the turbine hub height are extracted from the simulation results
as the dataset. Three inflow conditions with different freestream
wind speeds at 8 m/s, 9 m/s, and 10 m/s are considered. For
each simulation case, 20 simulations are implemented with dif-
ferent yaw angles in the range of [−30◦, 30◦]. For each sim-
ulated case, 1110s simulations are carried out where the first
400s simulation results are discarded as the wakes are not well
established at the initial phase, leaving 710 snapshots of the
flow field for each case. Thereafter, for each subdomain with
one turbine, the flow field is extracted and interpolated into a
uniform grid of 30 × 50, thereby forming the dataset of flow
field U in the shape of [180, 710, 30 × 50].

The generation process is conducted on a local cluster using
256 CPU cores. It takes around 7×105 CPU hours for the whole
dataset and the consumption of each simulation is around 46
hours. See [45] for the detailed simulation procedure.

2.5. Model training

There are 180 flow scenarios in the whole dataset where
each scenario contains unsteady flow fields at 710 discrete time
steps. Here, the first 64% time steps of each scenario are chosen
as the training set, the 64% ∼ 85% time steps as the validation
set, and the remaining 15% time steps as the test set. The look-
back time step of the flow history is set as 5. Then, the proposed
BiCNN is trained on the training set with a batch size of 1024
under the learning rate of 0.001 and evaluated on the validation
set after each epoch. During the training procedure, the early-
stopping and the dynamic learning rate adjustment strategies
are adopted to prevent the overfitting issue. To be concrete, for
early-stopping, the training process is interrupted if the loss on
the validation set does not decrease for 50 epochs. Meanwhile,
the dynamic learning rate adjustment strategy would halve the
learning rate if the loss does not reduce for 25 epochs. The
whole training procedure takes 653s using a single Intel Core
i7-7700 CPU and 32, 768 MB RAM. After training, the perfor-
mance of the BiCNN is measured on the test set by the mean
absolute error:

ϵ =
1

(N test
t − T ) × S

N test
t∑

i=T+1

S∑
j=1

|U
(1,1):(Nx,Ny)

i, j − Û
(1,1):(Nx,Ny)

i, j |, (5)

where U
(1,1):(Nx,Ny)

i, j indicates a high-fidelity snapshot of the flow
field in one subdomain at time step i for the scenario indexed
by j and N test

t means the number of time steps in the test set.

2.6. Multi-step predictions for the whole wind farm

After training, the flow field at time step T + 1, i.e. ûT+1, can
be predicted by the proposed BiCNN using the historical flow
field [ũ1, ũ2, ..., ũT ], the inflow velocity [u0

1, u0
2, ..., u0

T ], and
the distributed control parameters [d1, d2, ..., dT ]. Thereafter, by
defining the inflow velocity and distributed control parameters
at time step T + 1, i.e. u0

T+1 and dT+1, the flow field at time
step T + 2 can be predicted based on the historical data as well
as the predicted ûT+1. In this way, multi-step predictions can be
achieved iteratively for single turbine wakes.

For the whole wind farm, the BiCNN can be applied to the
flow field in each subdomain from upstream to downstream se-
quentially. After combining all the subdomains’ predictions,
the prediction for the whole wind farm can be obtained. The
multi-step predictions can then be achieved iteratively for the
whole farm similarly as the single turbine case.

3. Results and discussions

To comprehensively analyze the performance of the pro-
posed BiCNN, we first evaluate the prediction errors on the val-
idation set and test set for each turbine on each wind speed case.
Then, quantitative and qualitative evaluations are carried out on
the multi-step predictions for both the single-turbine wakes and
the multiple-turbine wakes. Finally, two case studies are car-
ried out to demonstrate the ability of the proposed BiCNN in
capturing the yaw effects and in simulating an array of wind
turbines.

3.1. Model evaluations

After training, the mean absolute error between the predic-
tions and the SOWFA data on the test set is 0.330 m/s, which
is 3.7% of the freestream wind speed. Apart from the overall
performance metric, we also report the prediction error for each
turbine at each wind speed case. As can be seen from Table 3,
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Fig. 4. An example case of the single-turbine wake prediction with the turbine operating in freestream condition at time steps (a) T , (b) T + 30, and (c) T + 100,
where the left column is generated by SOWFA while the right column is predicted by BiCNN. The turbine rotor is located at (0, 0) m of the 2D plane.

the proposed BiCNN has a similar performance for the valida-
tion set and the test set, demonstrating that the overfitting issue
is well tackled by the proposed method. Otherwise, there will
exist a clear accuracy gap between the validation set and test set.
On the other hand, the accuracy for the turbine operating in the
freestream condition (Turbine 1) is noticeably higher than those
operating in the front turbine’s wake condition (Turbine 2 and
Turbine 3). This is reasonable because the wakes of the latter
are significantly more complex than the former. Meanwhile, the
absolute errors increase with the wind speed, while the relative
errors normalized by the corresponding freestream wind speeds
are on the same level. This shows that the normalized prediction
error is a better metric to evaluate the overall performance. In
conclusion, all these results show that a consistently high level
of accuracy is achieved by the proposed model for different in-
flow conditions and different wind speeds. Specifically, for all
these cases, the relative errors are about 3.7% ± 0.2%.

3.2. Model validations

3.2.1. Single-turbine wake predictions
Based on the test set, the results of single-turbine wake

predictions are given here, where the proposed BiCNN pre-
dicts flow fields in multi-time steps iteratively. Concretely, for
BiCNN, the initial flow fields from time step T − 5 to T − 1 are

set as identical as SOWFA. Then the identical inflow conditions
and yaw angles as SOWFA from time step T to T + n are fed
into the BiCNN to predict the flow fields from T to T + n.

Different from the single-step prediction, the errors will be
accumulated when iteratively predicting wake flow fields for
multi steps, which then further affects the accuracy of the sub-
sequent time steps. Therefore, the prediction errors for iterative
multi-step predictions can strongly illustrate the stability and
the permanence of a dynamic wind farm wake model, demon-
strating its capability for long-term wake predictions. To verify
the effectiveness of the proposed BiCNN on multi-step predic-
tions, 100 time steps are predicted iteratively for each turbine
on each wind speed case, where the prediction errors are calcu-
lated and averaged along the time dimension. As can be seen
from Table 4, the prediction errors are about two times of the
errors reported in Table 3 for single-step predictions. Despite
the error increase, the overall prediction errors still remain low,
which is only up to 7.7% (7.3% on average) of the freestream
wind speed. As a contrast, the overall prediction error of the
POD-LSTM [45] for iterative multi-step predictions is 10.0%
on average based on the same configuration. Hence, a great
leap of 27% improvement is achieved by the proposed BiCNN
compared with the dimensionality reduction based method i.e.
the POD-LSTM [45].
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Fig. 5. An example case of the single-turbine wake prediction with the turbine operating in the front turbine’s wake at time steps (a) T , (b) T + 30, and (c) T + 100,
where the left column is generated by SOWFA while the right column is predicted by BiCNN. The turbine rotor is located at (0, 0) m of the 2D plane.

Table 3: The prediction errors on the validation set and the test set based on the single-step prediction. The values on the left and right sides show the evaluations
on the validation and the test sets respectively, while the Error shown in the last column is the percentage of the average error against the freestream wind speed.
Please notice that the errors are only calculated for the area within the wake boundary (99% of free stream).

Cases Turbine 1 (m/s) Turbine 2 (m/s) Turbine 3 (m/s) Average (m/s) Error (%)
8 m/s 0.204 / 0.212 0.306 / 0.306 0.340 / 0.311 0.283 / 0.276 3.5 / 3.5
9 m/s 0.248 / 0.286 0.355 / 0.337 0.399 / 0.378 0.334 / 0.334 3.7 / 3.7
10 m/s 0.280 / 0.321 0.399 / 0.396 0.418 / 0.419 0.366 / 0.379 3.7 / 3.8

We then examine the ML-based wake model’s qualitative
performance. Here, we choose two representative cases, i.e.,
the turbine operating in freestream condition and the turbine op-
erating in the front turbine’s wake. The comparisons between
SOWFA and BiCNN at time steps T , T + 30, and T + 100 are
demonstrated in Fig. 4 and Fig. 5, while the video version can
be seen in Video 1 and Video 2.

As shown in Fig. 4, the wake experiences a dramatic change
during the first 30 time steps, while the proposed BiCNN suc-
cessfully captures the unsteady features of the wake, and re-
tains good accuracy throughout the time period. As the flow
field at the future time step is predicted iteratively based on the
predicted flow field at the previous time step, the errors will
continue to accumulate over time. In spite of this, the overall
shape of the wake is still reconstructed well even at time step
T + 100. Similar results can also be seen in the case where the
turbine operates in the front turbine’s wake. Interfered by the

wake of the upstream turbine, the wake of the downstream tur-
bine is more complex and volatile. As illustrated in Fig. 5, the
spatial pattern and shape of the wakes are predicted accurately
by the BiCNN for this case as well.

Next, the wake profiles at different streamwise locations,
from one rotor diameter in front of the turbine (X = −1D) to
four rotor diameters behind the turbine (X = 4D), are examined
to further demonstrate the prediction performance. As shown
in the left column of Fig. 6, at X = 0D, the freestream inflow is
strongly disturbed by the turbine rotor. Then, the wake devel-
ops in the streamwise direction from X = 1D to X = 4D, and
finally reaches a Gaussian-like profile at X = 4D. For the case
of the turbine operating in the front turbine’s wake in the right
column of Fig. 6, the inflow at X = −1D is in a near Gaussian
shape induced by the upstream turbines, while the wake devel-
opment from X = 1D to X = 4D shows a similar tendency as
the freestream case.
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Fig. 6. The velocity profiles of the single-turbine wake prediction with the turbine operating in freestream condition and the front turbine’s wake condition at time
steps (a) T , (b) T + 30, and (c) T + 100, where the red dashed line is generated by SOWFA while the blue dashed line is predicted by BiCNN.

Fig. 7. An example case of the multi-turbine wake prediction with two turbines in a row at time steps (a) T , (b) T + 30, and (c) T + 100, where the left column is
generated by SOWFA while the right column is predicted by BiCNN. The front and the rear turbine rotors are located at (0, 0) m and (632, 0) m of the 2D plane,
respectively.

From the above figures, we can see that the wakes predicted
by the BiCNN are in high agreement with high-fidelity simula-

tion results. Although certain details are not well retained due
to the error accumulation over time, the main wake structures
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Fig. 8. The power generation calculated based on the flow fields predicted by SOWFA and BiCNN from T to T + 100. The solid lines are obtained by SOWFA
while the dashed lines are obtained by BiCNN.

Fig. 9. The velocity profiles for a two-turbine case at time steps (a) T , (b) T + 30, and (c) T + 100, where the red dashed line is generated by SOWFA while the blue
dashed line is predicted by BiCNN.

are reconstructed successfully even at time step T + 100. To
sum up, the main features of the unsteady turbine wake are suc-
cessfully captured by the BiCNN, which is especially true when
considering the inherently chaotic nature of the turbulent wakes
and the limited training data. More importantly, the wake pre-
diction is achieved in real time, i.e. only 0.002s computational

time is required for each time step using a single Intel Core
i7-7700 CPU.

3.2.2. Multi-turbine wake predictions
In this subsection, the experiments on multiple-turbine wake

predictions are implemented to illustrate the ability of BiCNN
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Fig. 10. The snapshots of the flow field around a single turbine predicted by the BiCNN at time steps (a) T + 120, (b) T + 150, and (c) T + 200, where the yaw angle
is −20◦ for the left column and 20◦ for the right column. The turbine rotor is located at (0, 0) m of the 2D plane.

Table 4: The prediction errors on the test set based on the iterative multi-step prediction. The values on the left and right sides show the evaluations for the BiCNN
and POD-LSTM respectively, while the Error shown in the last column is the percentage of the average error against the freestream wind speed. Please notice that
the errors are only calculated for the area within the wake boundary (99% of free stream).

Cases Turbine 1 (m/s) Turbine 2 (m/s) Turbine 3 (m/s) Average (m/s) Error (%)
8 m/s 0.440 / 0.518 0.594 / 0.784 0.633 / 0.799 0.556 / 0.700 6.9 / 8.8
9 m/s 0.698 / 1.036 0.671 / 0.987 0.703 / 0.963 0.691 / 0.995 7.7 / 11.1
10 m/s 0.690 / 0.982 0.726 / 0.982 0.784 / 1.085 0.733 / 1.016 7.3 / 10.2

in capturing wake interactions. To be specific, we consider the
case of two turbines located in a row with a downstream spac-
ing of 5 rotor diameters. The BiCNN is utilized to predict the
flow field in multi-time steps iteratively. Similarly, for the front
turbine, the initial inflow conditions of BiCNN from time step
T − 5 to T − 1 are set as identical as SOWFA, while yaw angles
for all turbines from time step T to T + n are set as identical as
SOWFA.

An example case is selected in Fig. 7 and Video 3 to illustrate
the ability of BiCNN in capturing the wake interactions, where
the results generated by the SOWFA and BiCNN at time steps
T , T + 30, and T + 100 are provided. As illustrated, the BiCNN
predictions match with SOWFA simulation results quite well,
especially for the first 30 time steps. Meanwhile, the main
flow features are still retained after 100 time steps. We men-
tion that without strong generalization ability, a model will fail
after just several iterations, as the input will deviate quickly

from the reference values due to the error accumulation, espe-
cially for multi-turbine wake predictions. The results here thus
demonstrate the robust generalization ability of the BiCNN in
predicting the wake interactions iteratively. Furthermore, we
calculate and compare the power production based on the flow
fields predicted by the BiCNN and SOWFA. As shown in Fig.
8, the power productions predicted by BiCNN agree with the
SOWFA’s production in the majority of time. In addition, for
the first turbine, the average powers predicted by BiCNN and
SOWFA are respectively 1.72 MW and 1.78 MW, while for the
second turbine they are respectively 0.64 MW and 0.67 MW.
Thus, the relative errors are 3.4% and 4.5% respectively.

To further verify the performance of the proposed BiCNN,
the corresponding velocity profiles at various locations from
X = −1D to X = 9D are reported in Fig. 9. The turbines
are located at X = 0D and X = 5D, where the wake deficits
emerge. Then, behind each turbine, the wake features, includ-
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Fig. 11. The snapshots of the flow field around a 5 × 5 wind turbine array
predicted by the BiCNN at time steps (a) T + 30, (b) T + 100, and (c) T + 200,
where the yaw angles of turbines are all set as 0◦. The 25 turbines are located at
the grid points of [0, 632, 1264, 1896, 2528] × [0, 379.2, 758.4, 1137.6, 1516.8]
m of the 2D plane.

ing wake deflection, recovery and expansion, are all predicted
well by the proposed BiCNN. Most importantly, the impact on
the downstream turbine from the upstream turbine is well cap-
tured, which demonstrates the developed model’s great poten-
tial for large-scale wind farm predictions.

3.3. Model predictions

3.3.1. The yaw effects on turbine wakes
To demonstrate the ability of the BiCNN in capturing the yaw

effects, a single turbine case with opposite yaw angles is inves-

tigated. Specifically, operating under the identical initial con-
dition, two independent turbines are given different yaw angles
(−20◦ and 20◦). The snapshots at time steps T + 120, T + 150,
and T + 200 are shown in Fig. 10, while the video is avail-
able as Video 4. As can be seen, for both yaw angles, the main
features of the unsteady turbine wakes are captured by the de-
veloped model during the whole procedure, including not only
the streamwise convection of flow structures in the deflected di-
rection due to yaw but also the wake’s crosswind meandering.
This fully demonstrates the great performance of the proposed
BiCNN. Compared with the ML model based on dimension-
ality reduction [45], the streamwise convection and crosswind
meandering of flow structures can be better captured by our
model because the intact spatial information is retained. Be-
sides, the generalization ability of the developed model is also
verified through this case as the constant yaw pattern is not in-
cluded during training.

3.3.2. A 25-turbine test case
To demonstrate the use of the developed model for large-

scale wind farm wake predictions, the simulation of a 5×5 wind
turbine test case is carried out. The freestream condition with
the average wind speed of 9 m/s is considered here. The yaw
angles of turbines are all set as 0◦, while the predicted snap-
shots at time steps T + 30, T + 100, and T + 200 are shown
in Fig. 11 and the corresponding video is available as Video 5.
As can be seen, the wake interactions between turbines are well
captured by the developed model. The unsteady flow field fea-
tures predicted by the developed model are similar to those in
the LES of wind farms, including the wake meandering and the
streamwise convection of flow structures. Thus, the generaliza-
tion ability of the proposed BiCNN to a wind farm is clearly
demonstrated by the above experiment. In terms of efficiency,
for the proposed BiCNN, the simulation process for 200 time
steps only takes 7.3s, i.e. 0.037s for each time step, using a sin-
gle Intel Core i7-7700 CPU. While with LES models, it would
require tens of thousands of CPU hours on an HPC cluster to
simulate this case. Therefore, this case fully demonstrates the
applied value of the developed model in the control design of
utility-scale wind farms.

4. Conclusions

In this work, a deep learning method, called Bilateral Con-
volutional Neural Network, was developed and then employed
for dynamic wind farm wake modeling based on full flowfield
high-fidelity Large Eddy Simulation data without dimension-
ality reduction. As the first method that introduces the con-
volutional neural network into the dynamic wind farm wake
model, the developed BiCNN model significantly outperformed
the conventional paradigm where dimensionality reduction is
essential. Specifically, in our pipeline, both the input and out-
put flow fields were kept in 2D formats, while the inputs were
classified into two categories according to physical intuitions.
Accordingly, two CNN-based paths, i.e. a foreground path and
a background path, were designed to process the different types
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of inputs, leading to a new framework for machine learning
based wake modeling.

The developed wake model was then extensively evaluated
under diverse inflow conditions and turbine yaw settings. Com-
pared against high-fidelity LES data, the overall error was only
3.7% with respect to the freestream wind speed. Further anal-
ysis demonstrated that the wind farm wakes, including both
near wake and far wake, were correctly captured by the pro-
posed model. Meanwhile, the velocity profiles matched very
well with the high-fidelity data, for turbines operating both in
freestream condition and the front turbine’s wake, and the de-
tailed wake structures were captured very well, including the
wake deflection with the turbine yaw angle, the wake recovery
in the streamwise direction, and more importantly the wake me-
andering. Furthermore, the developed model maintained a con-
sistently good performance for long-term simulations, demon-
strating the robustness of the developed model. Besides, the
parametric study for turbine yaw effects was carried out. The
results showed that the impact of turbine yaw was correctly cap-
tured, which also demonstrated the generalization ability of the
developed model to the input settings that are drastically differ-
ent from the training set. Furthermore, the case study for a 5×5
turbine array was carried out using the developed model. The
results showed that the flow details, in particular the wake in-
teractions, were predicted by the proposed BiCNN in real time,
demonstrating the huge potential of the developed model for the
fast simulations of wind farms.

The future work will involve the use of the proposed BiCNN
wake model for wind farm control, aiming at maximizing the
wind power generation, reducing wind turbine load, and sup-
porting the electricity grid. Other research directions include
generalizing the model to other types of turbines and the exten-
sion of BiCNN for full 3D dynamic wake modeling.
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wake model and comparison of eight algorithms for layout optimization
of wind farms in complex terrain, Applied Energy 259 (2020) 114189.

[17] S. R. Reddy, Wind farm layout optimization (windflo): An advanced
framework for fast wind farm analysis and optimization, Applied Energy
269 (2020) 115090.

[18] Z. Liu, S. Fan, Y. Wang, J. Peng, Genetic-algorithm-based layout opti-
mization of an offshore wind farm under real seabed terrain encounter-
ing an engineering cost model, Energy Conversion and Management 245
(2021) 114610.

[19] J. Zhang, X. Zhao, Quantification of parameter uncertainty in wind farm
wake modeling, Energy 196 (2020) 117065.

[20] H. Dong, J. Zhang, X. Zhao, Intelligent wind farm control via deep re-
inforcement learning and high-fidelity simulations, Applied Energy 292
(2021) 116928.
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