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Abstract: Semantic segmentation from very fine resolution (VFR) urban scene images plays a signifi-
cant role in several application scenarios including autonomous driving, land cover classification,
urban planning, etc. However, the tremendous details contained in the VFR image, especially the
considerable variations in scale and appearance of objects, severely limit the potential of the existing
deep learning approaches. Addressing such issues represents a promising research field in the remote
sensing community, which paves the way for scene-level landscape pattern analysis and decision
making. In this paper, we propose a Bilateral Awareness Network which contains a dependency
path and a texture path to fully capture the long-range relationships and fine-grained details in VFR
images. Specifically, the dependency path is conducted based on the ResT, a novel Transformer
backbone with memory-efficient multi-head self-attention, while the texture path is built on the
stacked convolution operation. In addition, using the linear attention mechanism, a feature aggrega-
tion module is designed to effectively fuse the dependency features and texture features. Extensive
experiments conducted on the three large-scale urban scene image segmentation datasets, i.e., ISPRS
Vaihingen dataset, ISPRS Potsdam dataset, and UAVid dataset, demonstrate the effectiveness of our
BANet. Specifically, a 64.6% mIoU is achieved on the UAVid dataset.

Keywords: urban scene segmentation; remote sensing; transformer; attention mechanism

1. Introduction

Semantic segmentation of very fine resolution (VFR) urban scene images comprises a
hot topic in the remote sensing community [1–6]. It plays a crucial role in various urban
applications, such as urban planning [7], vehicle monitoring [8], land cover mapping [9],
change detection [10], and building and road extraction [11,12], as well as other practical
applications [13–15]. The goal of semantic segmentation is to label each pixel with a certain
category. Since geo-objects in urban areas are characterized by large within-class and small
between-class variance commonly, semantic segmentation of very fine resolution RGB
imagery remains a challenging issue [16,17]. For example, urban buildings made of diverse
materials show variant spectral signatures, while buildings and roads made of the same
material (e.g., cement) exhibit similar textural information in RGB images.

Due to the advantage in local texture extraction, many researchers have investigated
the challenging urban scene segmentation task based on deep convolutional neural net-
works (DCNNs) [18,19]. Especially, the methods based on fully convolutional neural
network (FCN) [20], which can be trained end-to-end, have achieved great breakthroughs
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in urban scene labelling [21]. In comparison with the traditional machine learning meth-
ods, such as support vector machine (SVM) [22], random forest [23], and conditional
random field (CRF) [24], the FCN-based methods have demonstrated remarkable gener-
alization capability and high efficiency [25,26]. Therefore, numerous specially designed
FCN-based networks have been spawned for urban scene segmentation, including UNet
and its variants [4,16,27,28], multi-scale context aggregation networks [29,30], and multi-
level feature fusion networks [5], attention-based networks [3,31,32], as well as lightweight
networks [33]. For example, Sherrah [21] introduced the FCN to semantically label remote
sensing images. Kampffmeyer et al. [34] quantified the uncertainty in urban remote sens-
ing images at the pixel level, thereby enhancing the accuracy of relatively small objects
(e.g., Cars). Maggiori et al. [35] designed an auxiliary CNN to learn the features fusion
schemes. Multi-modal data were further utilized by Audebert et al. [36] in their V-FuseNet
to enhance the segmentation performance. However, if either modality is unavailable in the
test phase caused by sensors’ corruption or thick cloud cover [37], such a multi-modal data
fusion scheme will be invalid. Kampffmeyer et al. [38], therefore, proposed a hallucination
network aiming to replace missing modalities during testing. In addition, enhancing the
segmentation accuracy by optimizing object boundaries is another burgeoning research
area [39,40].

The accuracy of FCN-based networks, although encouraging, appears to be incompe-
tent for VFR segmentation. The reason is that almost all FCN-based networks are built on
DCNNs, while the latter is designed for extracting local patterns and lacks the ability to
model global context in its nature [41]. Hence, extensive investigations have been devoted
to addressing the above issue since the long-range dependency is vital for segmenting
confusing manmade objects in urban areas. Typical methods include dilated convolu-
tional networks which are designed for enlarging the receptive field [42,43] and attentional
networks that are proposed for capturing long-range relational semantic content of fea-
ture maps [31,44]. Nevertheless, these two networks have never been able to get rid of
the dependence on the convolution operation, impairing the effectiveness of long-range
information extraction.

Most recently, with its strong ability in long-range dependency capture and sequence-
based image modelling, an entirely novel architecture named Transformer [45] has become
prominent in various computer vision tasks, such as image classification [46], object de-
tection [47], and semantic segmentation [48]. The schematic flowchart of the Transformer
is illustrated in Figure 1a. First, the Transformer deploys a patch partition to split the 2D
input image into non-overlapping image patches. (H, W) and C denotes the resolution
and the channel dimension of the input image, respectively. (P, P) is the resolution of each
image patch. Then, a flatten operation and a linear projection are employed to produce the
1D sequence. The length of the sequence is N, where N = (H ×W)/P2. M is the output di-
mension of the linear projection. Finally, the sequence is fed into stacked transformer blocks
to extract features with long-range dependencies. As shown in Figure 1b, a standard trans-
former block is composed of multi-head self-attention (MHSA) [45], layer norm (LN) [49],
and multilayer perceptron (MLP) as well as two addition operations. L represents the
number of transformer blocks. Benefiting from the non-convolution structure and attention
mechanism, Transformer could capture long-range dependencies more effectively [50].
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Figure 1. (a) Illustration of the schematic flowchart of the Transformer. (b) Illustration of a standard transformer block.

Inspired by the advancement of Transformer, in this paper, we propose a Bilateral
Awareness Network (BANet) for accurate semantic segmentation of VFR urban scene
images. Different from the traditional single-path convolutional neural networks, BANet
addresses the challenging urban scene segmentation by constructing two feature extraction
paths, as illustrated in Figure 2. Specifically, a texture path using stacked convolution
layers is developed to extract the textural feature. Meanwhile, a dependency path using
Transformer blocks is established to capture the long-range dependent feature. To leverage
the benefits provided by the two features, we design a feature aggregation module (FAM)
which introduces the linear attention mechanism to reduce the fitting residual of fused
features, thereby strengthening the generalization capability of the network. Experimental
results on three large-scale urban scene image segmentation datasets demonstrate the
effectiveness of our BANet. In addition, the well-designed bilateral structure could provide
a unified solution for semantic segmentation, object detection, and change detection, which
undoubtedly boosts deep learning techniques in the remote sensing domain. To sum up,
the main contributions of this paper are the following:

(1) A novel bilateral structure composed of convolution layers and transformer blocks is
proposed for understanding and labelling very fine resolution urban scene images.
It provides a new perspective for capturing textural information and long-range
dependencies simultaneously in a single network.

(2) A feature aggregation module is developed to fuse the textural feature and long-range
dependent feature extracted by the bilateral structure. It employs linear attention to
reduce the fitting residual and greatly improves the generalization of fused features.
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Figure 2. The overall architecture of Bilateral Awareness Network (BANet).

The remainder of this paper is organized as follows. The architecture of BANet and
its components are detailed in Section 2. Experimental comparisons on three semantic
segmentation datasets (UAVid, ISPRS Vaihingen, and Potsdam) are provided in Section 3.
A comprehensive discussion is presented in Section 4. Finally, conclusions are drawn in
Section 5.

2. Bilateral Awareness Network
2.1. Overview

The overall architecture of the Bilateral Awareness Network (BANet) is exhibited
in Figure 2, where the input image is fed into the dependency path and texture path
simultaneously.

The dependency path employs a stem block and four transformer stages (i.e.,
Stage 1–4) to extract long-range dependent features. Each stage consists of two efficient
transformer blocks (ETB). In particular, Stage 2, Stage 3, and Stage 4 involve patch em-
bedding (PE) operations additionally. Proceed by the dependency path, two long-range
dependent features (i.e., LDF3 and LDF4) are generated.

The texture path deploys four convolution layers to capture the textural feature (TF),
while each convolutional layer is equipped with batch normalization (BN) [51] and ReLU
activation function [52]. The downsampling factor is set as 8 for the texture path to preserve
spatial details.

Since the outputs of the dependency path and the texture path are in disparate
domains, FAM is proposed to merge them effectively. Whereafter, a segmentation head
module is attached to convert the fused feature into a segmentation map.



Remote Sens. 2021, 13, 3065 5 of 20

2.2. Dependency Path

The dependency path is constructed by the ResT-Lite [53] pertained on ImageNet. As
an efficient vision transformer, ResT-Lite is suitable for urban scene interpretation due to
its balanced trade-off between segmentation accuracy and computational complexity. The
main basic modules of the ResT-lite include the stem block, patch embedding and efficient
transformer block.

Stem block: The stem block aims to shrink the height and width dimension and expand
the channel dimension. To capture low-level information effectively, it introduces three
3 × 3 convolution layers with strides of [2, 1, 2]. The first two convolution layers are
followed by BN and ReLU. Proceed by the stem block, the spatial resolution is downscaled
by a factor of 4, and the channel dimension is extended from 3 to 64.

Patch embedding: The patch embedding aims to downsample the feature map for hier-
archical feature representation. The output for each patch embedding can be formalized as

PE
(
X′
)
= Sigmoid

(
DWConv

(
X′
))
·X′ (1)

X′ = BN(Ws·X) (2)

where Ws represents a convolution layer with a kernel size of s+1 and a stride of s. Here, s
is set as 2. DWConv denotes a 3 × 3 depth-wise convolution [54] with a stride of 1.

Efficient transformer block: Each efficient transformer is composed of efficient multi-
head self-attention (EMSA) [53], MLP and LN. The output for each efficient transformer
block can be formalized as

ETB(X) = G(X) + MLP(LN(G(X))) (3)

G(X) = X + EMSA(Q, K, V) (4)

The EMSA, a revised self-attention module for computer vision based on MHSA, is
the main module of ETB. As illustrated in Figure 3, the detailed steps of EMSA are as
follows:

(1) EMSA obtains three vectors Q, K, V from the input vector X ∈ RN×D. Different from
the standard multi-head self-attention, EMSA first deploys a depth-wise convolution
with a kernel size of r+1 and stride of r to decrease the resolution of K and V, thereby
compressing the computation and memory. For the four transformer stages, r is set as
8, 4, 2, 1, respectively.

(2) To be specific, the input vector X is reshaped to a new vector with a shape of
D× H ×W, where H ×W = N. Proceed by the depth-wise convolution, the new
vector is reshaped to D× h× w. Here, h = H/r and w = W/r. Then, the new vector
is recovered to n× D as the input of LN, where h× w = n. Thus, the initial shape of
K and V is n× D. The initial shape of Q is N × D.

(3) The three vectors Q, K, V are fed into three linear projections and reshaped to
k × N × m, k × m × n and k × n × m, respectively. Here, k denotes the number of
heads, m denotes the head dimension, k×m = D.

(4) A matrix multiplication operation is applied on Q and K to generate an attention map
with the shape of k× N × n.

(5) The attention map is further proceeded by a convolution layer, a Softmax activation
function and an Instance Normalization [55] operation.

(6) A matrix multiplication operation is applied on the proceeded attention map and V.
Finally, a linear projection is utilized to generate the output vector. The formalization
of EMSA can be referred to the Equation (5).

EMSA(Q, K, V) = LP
(

IN
(

Softmax
(

Conv
(

QKT
√

m

)))
·V
)

(5)
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Here, Conv is a standard 1 × 1 convolution with a stride of 1. IN denotes an instance
normalization operation. LP represents a linear projection that keeps a dimension of D.

2.3. Texture Path

The texture path is a lightweight convolutional network, which builds four diverse
convolutional layers to capture textural information. The output for the texture path can
be formalized as

TF(X) = T4(T3(T2(T1X)))) (6)

Here, T represents a combined function consisting of a convolutional layer, a batch
normalization operation, and a ReLU activation. The convolutional layer of T1 has a kernel
size of 7 and a stride of 2, which expands the channel dimension from 3 to 64. For T2 and
T3, the kernel size and stride are 3 and 2, respectively. The channel dimension is kept as 64.
For T4, the convolutional layer is a standard 1× 1 convolution with a stride of 1, expanding
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the channel dimension from 64 to 128. Thus, the output textural feature is downscaled 8
times and has a channel dimension of 128.

2.4. Feature Aggregation Module

The FAM aims to leverage the benefits of the dependent features and texture features
comprehensively for powerful feature representation. As shown in Figure 4, the input
features for the FAM include the LDF3, LDF4 and TF. To fuse those features, we first
employ an attentional embedding module (AEM) to merge the LDF3 and LDF4. Thereafter,
the merged feature is upsampled to concatenate with the TF, obtaining the aggregated
feature. Finally, the linear attention module is deployed to reduce the fitting residual of the
aggregated feature (AF). The pipeline of FAM can be denoted as

FAM(AF) = AF·LAM(AF) + AF (7)

AF(TF, LDF3, LDF4) = C(U(AEM(LDF3, LDF4)), TF) (8)
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Here, C represents the concatenate function. U denotes an upsampling operation with
a scale factor of 2. The details of LAM and AEM are as follows.

Linear attention module: The conventional dot-product attention mechanism can be
defined as

D(Q, K, V) = ρ
(

QKT
)

V. (9)

ρ
(

QKT
)
= so f tmaxrow

(
QKT

)
, (10)

where query matrix Q, the key matrix K, and the value matrix V are generated by the
corresponding standard 1 × 1 convolutional layer with a stride of 1, and so f tmaxrow
indicates applying the softmax function along each row of matrix QKT. The ρ

(
QKT)

models the similarities between each pair of pixels of the input, thoroughly extracting the
global contextual information contained in the features. However, as Q ∈ RN×Dk . and
KT ∈ RDk×N , the product between Q and KT belongs to RN×N , which leads to O

(
N2)

memory and computation complexity. Therefore, the high resource-demanding of dot-
product crucially limits the application on large inputs. Under the condition of softmax
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normalization function, the i-th row of result matrix generated by the dot-product attention
module according to Equation (9) can be written as

D(Q, K, V)i =
∑N

j=1 eqi
Tkj vj

∑N
j=1 eqi

Tkj
, (11)

In our previous work on the linear attention (LA) mechanism [3], we design the LA
based on first-order approximation of Taylor expansion on Equation (11):

eqi
Tkj ≈ 1 +

(
qi
‖qi‖2

)T
(

kj

‖kj‖2

)
. (12)

where l2 norm is utilized to ensure qi
Tkj ≥ −1. Then, Equation (11) can be rewritten as

D(Q, K, V)i =
∑N

j=1

(
1 +

(
qi
‖qi‖2

)T
(

kj
‖kj‖2

))
vj

∑N
j=1

(
1 +

(
qi
‖qi‖2

)T
(

kj
‖kj‖2

)) , (13)

and be simplified as

D(Q, K, V)i =
∑N

j=1 vj +
(

qi
‖qi‖2

)T
∑N

j=1

(
kj
‖kj‖2

)
vT

j

N +
(

qi
‖qi‖2

)T
∑N

j=1

(
kj
‖kj‖2

) . (14)

The above equation can be transformed in a vectorized form as

D(Q, K, V) =
∑j Vi,j +

(
Q
‖Q‖2

)((
K
‖K‖2

)T
V
)

N +
(

Q
‖Q‖2

)
∑j

(
K
‖K‖2

)T

i,j

. (15)

As ∑N
j=1

(
kj
‖kj‖2

)
vT

j and ∑N
j=1

(
kj
‖kj‖2

)
can be calculated and reused for every query,

time and memory complexity of the proposed LA based on Equation (15) is O(N), while
the illustration can be seen in Figure 5.
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In the FAM, we first employ LA to enhance the spatial relationships of AF, thereby
suppressing the fitting residual. Then, a convolutional layer with BN and ReLU is deployed
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to obtain the attention map. Finally, we apply a matrix multiplication operation between
AF and the attention map to obtain the attentional AF. The pipeline of LAM is defined as

LAM(X) = Conv(BN(ReLU(LA(X)))) (16)

Here, Conv represents a standard convolution with a stride of 1.
Attentional embedding module: The AEM adopts the LAM to enhance the spatial relation-

ships of LDF4. Then, we apply a matrix multiplication operation between the upsampling
attention map of LDF4 and LDF3 to produce the attentional LDF3. Finally, we use an
addition operation to fuse the original LDF3 and the attentional LDF3. The pipeline of
AEM is illustrated in Figure 6 and can be formalized as

AEM(LDF3, LDF4) = LDF3 + LDF3·U(LAM(LDF4)) (17)

where U denotes the nearest upsampling operation with a scale factor of 2.
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Capitalizing on the benefits provided by feature fusion, the final segmentation feature
is abundant in both long-range dependency and textural information for precise semantic
segmentation of urban scene images. In addition, linear attention reduces the fitting
residual, strengthening the generalization of the network.

3. Experiments

In this section, experiments are conducted on three publicly available datasets to
evaluate the effectiveness of the proposed BANet. We not only compare the performance
of our model on the ISPRS Vaihingen and Potsdam datasets (http://www2.isprs.org/
commissions/comm3/wg4/semantic-labeling.html, accessed on 20 October 2020) against
the state-of-the-art models designed for remote sensing images but also take those pro-
posed for natural images into consideration. Further, the UAVid dataset [56] is utilized
to demonstrate the advantages of our method. Please note that as the backbone for the
dependency path of our BANet is ResT-Lite with 10.49 M parameters, the backbone for
comparative methods is selected as ResNet-18 with 11.7 M parameters correspondingly for
a fair comparison.

3.1. Experiments on the ISPRS Vaihingen and Potsdam Datasets
3.1.1. Datasets

Vaihingen: There are 33 VFR images with a 2494 × 2064 average size in the Vaihingen
dataset. The ground sampling distance (GSD) of tiles in Vaihingen is 9 cm. We utilize tiles:
2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35, 38 for testing, tile: 30 for validation, and
the remaining 15 images for training. Please note that we use only the near-infrared, red,
and green channels in our experiments. The example images and labels can be seen in the
top part of Figure 7.

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
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Figure 7. Example images and labels from the ISPRS Vaihingen dataset (top part) and Potsdam
dataset (bottom part).

Potsdam: There are 38 fine-resolution images that cover urban scenes in the size of
6000 × 6000 pixels with a 5 cm GSD. We utilize ID: 2_13, 2_14, 3_13, 3_14, 4_13, 4_14,
4_15, 5_13, 5_14, 5_15, 6_13, 6_14, 6_15, 7_13 for testing, ID: 2_10 for validation, and the
remaining 22 images, except image named 7_10 with error annotations, for training. Only
the red, green, and blue channels are used in our experiments. The example images and
labels can be seen in the bottom part of Figure 7.

3.1.2. Training Setting

For optimizing the network, the Adam is set as the optimizer with the 0.0003 learning
rate and 8 batch size. The images, as well as corresponding labels, are cropped into patches
with 512 × 512 pixels and augmented by rotating, resizing, and flipping during training.
All the experiments are implemented on a single NVIDIA RTX 3090 GPU with 24 GB RAM.
The cross-entropy loss function is utilized as the loss function to measure the disparity
between the achieved segmentation maps and the ground reference. If OA on the validation
set does not increase for more than 10 epochs, the training procedure will be stopped, while
the maximum iteration period is 100 epochs.
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3.1.3. Evaluation Metrics

The performance of BANet on the ISPRS Potsdam dataset is evaluated using the
overall accuracy (OA), the mean Intersection over Union (mIoU), and the F1 score (F1),
which are computed on the accumulated confusion matrix:

OA =
∑N

k=1 TPk

∑N
k=1 TPk + FPk + TNk + FNk

, (18)

mIoU =
1
N

N

∑
k=1

TPk
TPk + FPk + FNk

, (19)

F1 = 2× precision× recall
precision + recall

, (20)

where TPk, FPk, TNk, and FNk indicate the true positive, false positive, true negative, and
false negatives, respectively, for object indexed as class k. OA is calculated for all categories
including the background.

3.1.4. Experimental Results

A detailed comparison between our BANet and other architectures including
BiSeNet [57], FANet [58], MAResU-Net [3], EaNet [40], SwiftNet [59], and ShelfNet [60] can
be seen in Tables 1 and 2, based upon the F1-score for each category, mean F1-score, and the
OA, and the mIoU on the Vaihingen Potsdam test sets. As it can be observed from the table,
the proposed BANet transcends the previous methods designed for segmentation by a large
margin, achieving the highest OA of 90.48% and mIoU of 81.35% in the Vaihingen dataset,
while the figures for the Potsdam dataset are 91.06% and 86.25%, respectively. Specifically,
on the Vaihingen dataset, the proposed BANet brings more than 0.4% improvement in
OA and 1.7% improvement in mIoU compared with the suboptimal method, while the
improvements for the Potsdam dataset are more than 1.1% and 1.8%. Particularly, as the
relatively small objects, the Car is difficult to recognize in the Vaihingen dataset. Even so,
the proposed BANet achieves an 86.76% F1-score, preceding the suboptimal method by
more than 5.5%.

Table 1. The experimental results on the Vaihingen dataset.

Method Backbone Imp. Surf. Building Low Veg. Tree Car Mean F1 OA mIoU

BiSeNet ResNet-18 89.12 91.30 80.87 86.91 73.12 84.26 87.08 75.82
FANet ResNet-18 90.65 93.78 82.60 88.56 71.60 85.44 88.87 75.61

MAResU-Net ResNet-18 91.97 95.04 83.74 89.35 78.28 87.68 90.07 78.58
EaNet ResNet-18 91.68 94.52 83.10 89.24 79.98 87.70 89.69 78.68

SwiftNet ResNet-18 92.22 94.84 84.14 89.31 81.23 88.35 90.20 79.58
ShelfNet ResNet-18 91.83 94.56 83.78 89.27 77.91 87.47 89.81 78.94

BANet ResT-Lite 92.23 95.23 83.75 89.92 86.76 89.58 90.48 81.35

Table 2. The experimental results on the Potsdam dataset.

Method Backbone Imp. Surf. Building Low Veg. Tree Car Mean F1 OA mIoU

BiSeNet ResNet-18 90.24 94.55 85.53 86.20 92.68 89.84 88.16 81.72
FANet ResNet-18 91.99 96.10 86.05 87.83 94.53 91.30 89.82 84.16

MAResU-Net ResNet-18 91.41 95.57 85.82 86.61 93.31 90.54 89.04 83.87
EaNet ResNet-18 92.01 95.69 84.31 85.72 95.11 90.57 88.70 83.38

SwiftNet ResNet-18 91.83 95.94 85.72 86.84 94.46 90.96 89.33 83.84
ShelfNet ResNet-18 92.53 95.75 86.60 87.07 94.59 91.31 89.92 84.38

BANet ResT-Lite 93.34 96.66 87.37 89.12 95.99 92.50 91.06 86.25
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To qualitatively validate the effectiveness, we visualize the segmentation maps gen-
erated by our BANet and comparative methods in Figure 8. Due to the limited receptive
field, the BiSeNet, EaNet, and SwiftNet assign the classification of a specific pixel only by
considering a few adjacent areas, leading to fragmented maps and confusion of objects.
The direct utilization of the attention mechanism (i.e., MAResU-Net) and the structure of
multiple encoder-decoder (i.e., ShelfNet) brings certain improvements. However, the issue
of the receptive field is still not entirely resolved. By contrast, we construct the dependency
path in our BANet based on an attention-based backbone, i.e., ResT, to capture the long-
range global relations, thereby tackling the limitation of the receptive field. Furthermore, a
texture path built on convolution operation is equipped in our BANet to utilize the spatial
details information in feature maps. Particularly, as shown in Figure 8, the complex circular
contour of the Low vegetation is preserved completely by our BANet. In addition, the
outlines of the Building generated by our BANet are smoother than those obtained by
comparative methods.

3.2. Experiments on the UAVid Dataset
3.2.1. Dataset

As a fine-resolution Unmanned Aerial Vehicle (UAV) semantic segmentation dataset,
the UAVid dataset (https://uavid.nl/, accessed on 10 May 2021) is focusing on urban street
scenes with a 3840 × 2160 resolution. UAVid is a challenging benchmark since the large
resolution of images, large-scale variation, and complexities in the scenes. To be specific,
there are 420 images in the dataset where 200 are for training, 70 for validation, and the
remaining 150 for testing. The example images and labels can be seen in Figure 9.

We adopt the same hyperparameters and data augmentation as those for experiments
on ISPRS datasets, except batch size as 4 and the patch size as 1024 × 1024 during training.

3.2.2. Evaluation Metrics

For the UAVid dataset, the performance is assessed from the official server based on
the intersection-over-union metric:

IoU =
TPk

TPk + FPk + FNk
, (21)

where TPk, FPk, TNk, and FNk indicate the true positive, false positive, true negative, and
false negatives, respectively, for object indexed as class k.

3.2.3. Experimental Results

Quantitative comparison with MSD [56], Fast-SCNN [61], BiSeNet, SwiftNet, and
ShelfNet are reported in Table 3. As can be seen, the proposed BANet achieves the best IOU
score on five out of eight classes and the best mIoU with a 3% gain over the suboptimal
BiSeNet. Qualitative results on the UAVid validation set and test set are demonstrated
in Figures 10 and 11, respectively. Compared with the benchmark MSD with obvious
local and global inconsistencies, the proposed BANet can effectively capture the cues to
scene semantics. For example, in the second row of Figure 11, the cars in the pink box are
obviously all moving on the road. However, the MSD identity the left car which is crossing
the street as the static car. In contrast, our BANet successfully recognizes all moving cars.

https://uavid.nl/
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Table 3. The experimental results on the UAVid dataset.

Method Building Tree Clutter Road Vegetation Static Car Moving Car Human mIoU

MSD 79.8 74.5 57.0 74.0 55.9 32.1 62.9 19.7 57.0
Fast-SCNN 75.7 71.5 44.2 61.6 43.4 19.5 51.6 0.0 45.9

BiSeNet 85.7 78.3 64.7 61.1 77.3 63.4 48.6 17.5 61.5
SwiftNet 85.3 78.2 64.1 61.5 76.4 62.1 51.1 15.7 61.1
ShelfNet 76.9 73.2 44.1 61.4 43.4 21.0 52.6 3.6 47.0

BANet 85.4 78.9 66.6 80.7 62.1 52.8 69.3 21.0 64.6

4. Discussion
4.1. Ablation Study

In this part, we conduct extensive ablation experiments on the ISPRS Potsdam dataset
to verify the effectiveness of components in the proposed BANet, while the experimental
settings and quantitative comparisons are illustrated in Table 4. The results are reported
by the average value and corresponding deviation by three-fold experiments. Qualitative
comparisons about the ablation study can be seen in Figure 12.
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Table 4. The experimental results of the ablation study.

Method Imp. Surf. Building Low Veg. Tree Car Mean F1 OA mIoU

ResNet 90.91 ± 0.45 95.18 ± 0.35 84.86 ± 0.92 86.44 ± 0.37 94.03 ± 0.63 90.28 ± 0.28 88.48 ± 0.50 82.34 ± 0.55
ResT 92.01 ± 0.58 95.73 ± 0.70 85.87 ± 0.58 87.24 ± 0.80 94.13 ± 0.49 91.00 ± 0.60 89.63 ± 0.49 83.80 ± 0.74

Dp+Tp(Sum) 92.11 ± 0.48 95.63 ± 0.43 86.5 ± 0.59 87.09 ± 0.97 94.44 ± 0.30 91.15 ± 0.53 89.87 ± 0.63 84.15 ± 0.72
Dp+Tp(Cat) 92.30 ± 0.55 95.99 ± 0.53 86.18 ± 0.64 87.57 ± 1.04 94.58 ± 0.77 91.32 ± 0.68 90.35 ± 0.23 85.31 ± 0.75
BAResNet 92.46 ± 0.21 95.37 ± 0.43 85.92 ± 0.84 87.24 ± 0.70 94.79 ± 0.28 91.16 ± 0.48 89.60 ± 0.54 84.07 ± 0.64

BANet 93.27 ± 0.11 96.53 ± 0.15 87.19 ± 0.23 88.63 ± 0.45 95.58 ± 0.44 92.24 ± 0.23 90.86 ± 0.18 85.78 ± 0.46
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Baseline: We select two baselines in ablation experiments, the dependency path which
utilizes the ResNet-18 (denoted as ResNet) as the backbone and the dependency path
which adopts the ResT-Lite (denoted as ResT) as the backbone. The feature maps generated
by the dependency path are directly upsampled to restore the shape for final segmentation.

Ablation for the texture path: As rich spatial details are important for segmentation,
the texture path conducted on the convolution operation is designed in our BANet for
preserving the spatial texture. Table 4 illustrates that even the simple fusion schemes such
as summation (indicated as Dp+Tp(Sum)) and concatenation (signified as Dp+Tp(Cat)) to
merge the texture information can enhance the performance in OA at least 0.2%.

Ablation for feature aggregation module: Given the information obtained by the de-
pendency path and the texture path are in different domains, neither summation nor
concatenation is the optimal feature fusion scheme. As shown in Table 4, more than 0.5%
improvement in OA brings by our BANet compared with Dp+Tp(Sum) and Dp+Tp(Cat)
explains the validity of the proposed feature aggregation module.

Ablation for ResT-Lite: Since a novel transformer-based backbone, i.e., ResT, is intro-
duced in our BANet, it is valuable to compare the accuracy between the ResNet and ResT.
As illustrated in Table 4, the replacement of the backbone in the dependency path brings
more than the 1% improvement in OA. In addition, we substitute the backbone in our
BANet with ResNet-18 (denoted as BAResNet) to further evaluate the performance. As can
be seen in Table 4, a 1.2% gap in OA illuminates the effectiveness of the ResT-Lite. Note
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that the number of parameters for BAResNet is 14.77 million (59.0 MB for weights file),
while the figure for BANet is 15.44 million (56.4 MB for weights file). The inference speed
of BAResNet is 73.2 FPS on a single mid-range GPU card, i.e., 1660Ti, for 512 × 512 input
images, while the speed of BANet is 33.2 FPS, both satisfy the requirement of real-time
(≥30 FPS) scenarios. Please notice that the Nvidia GPU has the specialized optimization
for CNN, while the optimization for Transformer is not available now. Therefore, the
comparison is not completely fair now.

4.2. Application Scenarios

The main application scenario of our method is urban scene segmentation using re-
motely sensed images captured by satellite, aerial sensors, and UAV drones. The proposed
Bilateral Awareness Network, which consists of a texture path, a dependency path, and
a feature aggregation module, provides a unified framework for semantic segmentation,
object detection, and change detection. Moreover, our model considers both accuracy and
complexity, revealing enormous potential in illegal land use detection, real-time traffic
monitoring, and urban environmental assessment.

In the future, we will continue to study the hybrid structure of convolution and
Transformer and apply it to a wider range of urban applications

5. Conclusions

This paper proposes a Bilateral Awareness Network for semantic segmentation of very
fine resolution urban scene images. Specifically, there are two branches in our BANet, a
dependency path built on the Transformer backbone to capture the long-range relationships
and a texture path constructed on the convolution operation to exploit the fine-grained
details in VHR images. In particular, we further design an attentional feature aggregation
module to fuse the global relationship information captured by the dependency path and
the spatial texture information generated by the texture path. Extensive experiments on
the ISPRS Vaihingen dataset, ISPRS Potsdam dataset, and UAVid dataset demonstrate the
effectiveness of the proposed BANet. As a novel exploration to combine the Transformer
and convolution in a bilateral structure, we envisage this pioneering paper could inspire
practitioners and researchers engaged in this area to explore more possibilities of the
Transformer in the remote sensing domain.
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Abbreviations
The following abbreviations are used in this manuscript:

VFR Very Fine Resolution
DCNNs Deep Convolutional Neural Networks
FCN Fully Convolutional Neural Network
SVM Support Vector Machine
RF Random Forest
CRF Conditional Random Field
MHSA Multi-Head Self-Attention
MLP Multilayer Perceptron
FAM Feature Aggregation Module
BANet Bilateral Awareness Network
TF Textural Features
AF Aggregated Feature
LDF Long-range Dependent Features
BN Batch Normalization
GSD Ground Sampling Distance
UAV Unmanned Aerial Vehicle
LA Linear Attention
AEM Attentional Embedding Module
EMSA Efficient Multi-head Self-attention
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